Task: | Maalarit |
Sender: | mangolassi |
Submission time: | 2016-10-04 23:01:07 +0300 |
Language: | C++ |
Status: | READY |
Result: | 44 |
group | verdict | score |
---|---|---|
#1 | ACCEPTED | 12 |
#2 | WRONG ANSWER | 0 |
#3 | WRONG ANSWER | 0 |
#4 | ACCEPTED | 32 |
test | verdict | time | group | |
---|---|---|---|---|
#1 | ACCEPTED | 0.06 s | 1 | details |
#2 | ACCEPTED | 0.06 s | 1 | details |
#3 | ACCEPTED | 0.05 s | 1 | details |
#4 | ACCEPTED | 0.06 s | 1 | details |
#5 | ACCEPTED | 0.05 s | 1 | details |
#6 | ACCEPTED | 0.05 s | 1 | details |
#7 | ACCEPTED | 0.05 s | 2 | details |
#8 | ACCEPTED | 0.05 s | 2 | details |
#9 | ACCEPTED | 0.05 s | 2 | details |
#10 | ACCEPTED | 0.05 s | 2 | details |
#11 | WRONG ANSWER | 0.06 s | 2 | details |
#12 | ACCEPTED | 0.05 s | 2 | details |
#13 | ACCEPTED | 0.05 s | 3 | details |
#14 | WRONG ANSWER | 0.06 s | 3 | details |
#15 | ACCEPTED | 0.06 s | 3 | details |
#16 | ACCEPTED | 0.06 s | 3 | details |
#17 | ACCEPTED | 0.05 s | 3 | details |
#18 | ACCEPTED | 0.05 s | 3 | details |
#19 | ACCEPTED | 0.11 s | 4 | details |
#20 | ACCEPTED | 0.11 s | 4 | details |
#21 | ACCEPTED | 0.10 s | 4 | details |
#22 | ACCEPTED | 0.10 s | 4 | details |
#23 | ACCEPTED | 0.11 s | 4 | details |
#24 | ACCEPTED | 0.09 s | 4 | details |
Code
#include <iostream> #include <stack> inline long min(long a, long b) {return (a <= b ? a : b);} inline long max(long a, long b) {return (a >= b ? a : b);} inline long abs(long v) {return (v >= 0 ? v : -v);} // custom list in order to implement combining two lists. struct ListNode { long a; long b; ListNode* next; ListNode(long a_painter, long b_painter) { a = a_painter; b = b_painter; next = 0; } }; struct List { ListNode* root; List() { root = 0; } void print() { ListNode* p = root; while(p != 0) { std::cout << "(" << p->a << "," << p->b << "), "; p = p->next; } std::cout << "\n"; } void add(long a, long b, ListNode* previous) { ListNode* n = new ListNode(a,b); if (previous == 0) { n->next = root; root = n; } else { n->next = previous->next; previous->next = n; } } void add(ListNode* n, ListNode* previous) { if (previous == 0) { n->next = root; root = n; } else { n->next = previous->next; previous->next = n; } } List combine_worse(List other) { List result; ListNode* rl = 0; ListNode* otherNode = other.root; ListNode* thisNode = root; ListNode* temp = 0; while(true) { long a = max(thisNode->a, otherNode->a); long b = max(thisNode->b, otherNode->b); if (thisNode->a == a) { if (otherNode->a == a) { temp = otherNode; otherNode = otherNode->next; delete temp; } temp = thisNode; thisNode = thisNode->next; } else { temp = otherNode; otherNode = otherNode->next; } temp->a = a; temp->b = b; if (thisNode == 0 || otherNode == 0) { result.add(temp, rl); break; } long nb = max(thisNode->b, otherNode->b); if (nb == b) { continue; } else { result.add(temp, rl); rl = (rl == 0 ? result.root : rl->next); } } while(thisNode != 0) { temp = thisNode; thisNode = thisNode->next; delete temp; } while(otherNode != 0) { temp = otherNode; otherNode = otherNode->next; delete temp; } root = 0; other.root = 0; return result; } void combine_better(long a,long b) { if (root->a == a) { root->b = min(root->b, b); return; } else if (root->a > a) { if (root->b >= b) { if (root->next == 0) { root->a = a; root->b = b; return; } ListNode* temp = root; root = root->next; delete temp; } } else { if (b >= root->b) { return; } add(a,b,0); return; } ListNode* p = root; ListNode* c = root->next; while(c != 0 && c->a > a) { if (c->b >= b) { p->next = c->next; delete c; } else { p = c; } c = p->next; } if (c == 0) { ListNode* nn = new ListNode(a,b); p->next = nn; } else if (c->a == a) { c->b = min(b, c->b); } else if (c->b > b) { ListNode* nn = new ListNode(a,b); p->next = nn; nn->next = c; } return; } }; // Augmented binary heap. Sorted like binary tree based on index, children have smaller height than their parents. // i_s is interval start, i_e its end and min the smallest value under a node. struct Node { long h; int i; long min; int i_s; int i_e; List list; Node* left; Node* right; Node* parent; Node(long height, int index) { h = height; i = index; min = h; i_s = index; i_e = index; left = 0; right = 0; parent = 0; } }; struct TreeHeap { Node* root; TreeHeap() { root = 0; } Node* min_index(Node* n) { while(n->left != 0) { n = n->left; } return n; } void print(Node* n) { std::cout << n->h << "-" << n->min << "-" << n->i_s << "-" << n->i_e; if (n->left != 0) { std::cout << "("; print(n->left); if (n->right != 0) { std::cout << ","; print(n->right); } std::cout << ")"; } else if (n->right != 0) { std::cout << "("; print(n->right); std::cout << ")"; } } void print_tree() { if (root != 0) { print(root); } std::cout << "\n"; } Node* next_index(Node* n) { if (n->right != 0) { return min_index(n->right); } while(n->parent != 0) { if (n == n->parent->right) { n = n->parent; } else { return n->parent; } } return 0; } void add(long h, int i) { Node* node = new Node(h,i); if (root == 0) { root = node; } else { Node* n = root; if (h >= root->h) { node->left = root; root->parent = node; root = node; return; } while (true) { if (n->right == 0 || n->right->h <= h) { if (n->right != 0) { n->right->parent = node; node->left = n->right; } n->right = node; node->parent = n; break; } else { n = n->right; } } } } }; // We use the following strategy: // The highest one of any interval must go to either gardener 1 or 2. If it would go to gardener 3, we could // Reduce the cost of that interval by painting that piece of wood with painter 1 or 2. // If we paint it with painter 2, we can fill the rest of the interval with 1 and 2, reaching // Minimum value easily. If we paint it with painter 1, we'll handle both of the intervals caused // By splitting this one. This way we only need nlgn time in the average case, uneven splits // can mess with us though, making the performance more like n squared. // So first we find all combinations we can pay to the painters on a given interval, // With redundant options removed, and then we combine the results for two intervals. // When the interval is the whole wall, we can go through the list and choose the smallest price. // After we have calculated how much we need to pay to the painters, You can just fill all of the wall pieces // With height below or equal to painter 3's salary, and then add the two remaining painters on the intervals, // such that painter 2's salary is low enough. int main() { int count; std::cin >> count; if (count == 1) { long h; std::cin >> h; std::cout << h << " 1\n"; std::cout << "1\n"; } else { long* heights = new long[count]; TreeHeap th; for (int i = 0; i < count; ++i) { long h; std::cin >> h; th.add(h, i); heights[i] = h; } std::stack<Node*> p; p.push(th.root); while(p.size() > 0) { Node* n = p.top(); bool complete = true; if (n->left != 0) { if ((n->left->i_s == n->left->i && n->left->left != 0) || (n->left->i_e == n->left->i && n->left->right != 0)) { p.push(n->left); complete = false; } else { n->min = min(n->left->min, n->min); n->i_s = n->left->i_s; } } if (n->right != 0) { if ((n->right->i_s == n->right->i && n->right->left != 0) || (n->right->i_e == n->right->i && n->right->right != 0)) { p.push(n->right); complete = false; } else { n->min = min(n->right->min, n->min); n->i_e = n->right->i_e; } } if (complete) p.pop(); } // Initialization complete, now calculate costs p.push(th.root); while(p.size() > 0) { Node* n = p.top(); if ((n->left == 0 && n->i != 0) || (n->right == 0 && n->i != (count-1)) || (n->parent != 0 && (abs(n->parent->i - n->i) == 1))) { long a = n->h; long b = 0; if ((n->i - n->i_s) % 2 == 1 && n->i_s != 0) { b = n->left->min; } if ((n->i_e - n->i) % 2 == 1 && n->i_e != (count-1)) { b = max(b, n->right->min); } n->list.add(a,b,0); p.pop(); continue; } bool d = true; if (n->left != 0 && n->left->list.root == 0) { p.push(n->left); d = false; } if (n->right != 0 && n->right->list.root == 0) { p.push(n->right); d = false; } if (d) { p.pop(); if (n->left != 0) { if (n->right != 0) { n->list = n->left->list.combine_worse(n->right->list); } else { n->list = n->left->list; } } else { if (n->right != 0) { n->list = n->right->list; } else { n->list.add(n->h, 0, 0); continue; } } // Handle case where we have the 2nd painter paint the wall long a = n->h; long b = 0; // If the distance is odd, we need a 3 somewhere, so we put it at the Minimum. // This however is not necessary if both ends of the interval aren't green. if ((n->i - n->i_s) % 2 == 1 && n->i_s != 0) { b = n->left->min; } if ((n->i_e - n->i) % 2 == 1 && n->i_e != count-1) { b = max(b, n->right->min); } n->list.combine_better(a,b); } } // Now with the costs generate a solution. ListNode* n = th.root->list.root; long cost = 10e10; long gc = th.root->h; long gb = 0; long ga = 0; while(n != 0) { if (n->a + n->b < cost) { ga = n->a; gb = n->b; cost = ga + gb; } n = n->next; } std::cout << gc + gb + ga << " " << (gb > 0 ? 3 : 2) << "\n"; for (int is = 0; is < count;) { bool first = true; int im = 0; int ie = is; for (; ie < count; ++ie) { if (heights[ie] <= gb) break; if (heights[ie] > im) { im = heights[ie]; first = ((ie - is) % 2 == 0); } } bool parity = true; for (int i = is; i < ie; i += 1, parity = !parity) { if ((parity && first) || (!parity && !first)) { std::cout << "1 "; } else { std::cout << "2 "; } } if (ie < count) { std::cout << "3 "; } is = ie + 1; } std::cout << "\n"; } }
Test details
Test 1
Group: 1
Verdict: ACCEPTED
input |
---|
10 22 54 3 91 69 90 40 29 83 71 |
correct output |
---|
174 3 2 1 2 1 2 1 2 1 2 1 |
user output |
---|
174 2 2 1 2 1 2 1 2 1 2 1 |
Test 2
Group: 1
Verdict: ACCEPTED
input |
---|
10 49 3 96 38 90 18 92 74 83 1 |
correct output |
---|
170 3 1 2 1 2 1 2 1 2 1 2 |
user output |
---|
170 2 1 2 1 2 1 2 1 2 1 2 |
Test 3
Group: 1
Verdict: ACCEPTED
input |
---|
10 46 3 41 30 16 17 12 93 80 81 |
correct output |
---|
173 3 2 1 2 1 2 1 2 1 2 1 |
user output |
---|
173 2 2 1 2 1 2 1 2 1 2 1 |
Test 4
Group: 1
Verdict: ACCEPTED
input |
---|
10 46 8 95 85 82 73 82 92 53 90 |
correct output |
---|
187 3 1 2 1 2 1 2 1 2 1 2 |
user output |
---|
187 2 1 2 1 2 1 2 1 2 1 2 |
Test 5
Group: 1
Verdict: ACCEPTED
input |
---|
10 41 18 61 59 40 96 5 2 74 38 |
correct output |
---|
159 3 2 1 2 1 2 1 2 3 1 2 |
user output |
---|
159 3 2 1 2 1 2 1 2 3 1 2 |
Test 6
Group: 1
Verdict: ACCEPTED
input |
---|
10 1 1 1 1 1 1 1 1 1 1 |
correct output |
---|
2 3 2 1 2 1 2 1 2 1 2 1 |
user output |
---|
2 2 1 2 1 2 1 2 1 2 1 2 |
Test 7
Group: 2
Verdict: ACCEPTED
input |
---|
100 1 39 94 5 24 84 84 10 78 61 38... |
correct output |
---|
193 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
193 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 8
Group: 2
Verdict: ACCEPTED
input |
---|
100 31 73 18 88 49 28 66 5 32 48 9... |
correct output |
---|
199 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
199 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 9
Group: 2
Verdict: ACCEPTED
input |
---|
100 45 56 36 60 31 10 23 79 29 17 ... |
correct output |
---|
198 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
198 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 10
Group: 2
Verdict: ACCEPTED
input |
---|
100 1 77 70 62 21 68 40 54 90 62 1... |
correct output |
---|
194 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
194 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 11
Group: 2
Verdict: WRONG ANSWER
input |
---|
100 4 47 41 81 56 64 12 10 20 100 ... |
correct output |
---|
189 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
189 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 12
Group: 2
Verdict: ACCEPTED
input |
---|
10 1 1 1 1 1 1 1 1 1 1 |
correct output |
---|
2 3 2 1 2 1 2 1 2 1 2 1 |
user output |
---|
2 2 1 2 1 2 1 2 1 2 1 2 |
Test 13
Group: 3
Verdict: ACCEPTED
input |
---|
100 256160448 813097800 167146270 ... |
correct output |
---|
1929869257 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
1929869257 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 14
Group: 3
Verdict: WRONG ANSWER
input |
---|
100 520002672 3542567 24668528 959... |
correct output |
---|
1946957555 3 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
1946957555 3 1 3 3 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 15
Group: 3
Verdict: ACCEPTED
input |
---|
100 483158423 780224665 844754665 ... |
correct output |
---|
1959373560 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
1959373560 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 16
Group: 3
Verdict: ACCEPTED
input |
---|
100 969647264 128558017 889036329 ... |
correct output |
---|
1997942264 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
1997942264 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 17
Group: 3
Verdict: ACCEPTED
input |
---|
100 745018527 400495893 635468795 ... |
correct output |
---|
1961391143 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
1961391143 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 18
Group: 3
Verdict: ACCEPTED
input |
---|
10 1 1 1 1 1 1 1 1 1 1 |
correct output |
---|
2 3 2 1 2 1 2 1 2 1 2 1 |
user output |
---|
2 2 1 2 1 2 1 2 1 2 1 2 |
Test 19
Group: 4
Verdict: ACCEPTED
input |
---|
100000 197349274 775463806 263930657 ... |
correct output |
---|
1999942635 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
1999942635 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 20
Group: 4
Verdict: ACCEPTED
input |
---|
100000 102296405 34648120 320393597 9... |
correct output |
---|
1999930943 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
user output |
---|
1999930943 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ... |
Test 21
Group: 4
Verdict: ACCEPTED
input |
---|
100000 781254921 418252056 502363453 ... |
correct output |
---|
1999987794 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
1999987794 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 22
Group: 4
Verdict: ACCEPTED
input |
---|
100000 849784881 230439009 455097426 ... |
correct output |
---|
1999979439 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
1999979439 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 23
Group: 4
Verdict: ACCEPTED
input |
---|
100000 851456132 13422224 537539701 4... |
correct output |
---|
1999948226 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
user output |
---|
1999948226 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |
Test 24
Group: 4
Verdict: ACCEPTED
input |
---|
100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... |
correct output |
---|
2 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 ... |
user output |
---|
2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ... |