CSES - Datatähti 2017 alku - Results
Submission details
Task:Maalarit
Sender:mangolassi
Submission time:2016-10-04 23:01:07 +0300
Language:C++
Status:READY
Result:44
Feedback
groupverdictscore
#1ACCEPTED12
#20
#30
#4ACCEPTED32
Test results
testverdicttimegroup
#1ACCEPTED0.06 s1details
#2ACCEPTED0.06 s1details
#3ACCEPTED0.05 s1details
#4ACCEPTED0.06 s1details
#5ACCEPTED0.05 s1details
#6ACCEPTED0.05 s1details
#7ACCEPTED0.05 s2details
#8ACCEPTED0.05 s2details
#9ACCEPTED0.05 s2details
#10ACCEPTED0.05 s2details
#110.06 s2details
#12ACCEPTED0.05 s2details
#13ACCEPTED0.05 s3details
#140.06 s3details
#15ACCEPTED0.06 s3details
#16ACCEPTED0.06 s3details
#17ACCEPTED0.05 s3details
#18ACCEPTED0.05 s3details
#19ACCEPTED0.11 s4details
#20ACCEPTED0.11 s4details
#21ACCEPTED0.10 s4details
#22ACCEPTED0.10 s4details
#23ACCEPTED0.11 s4details
#24ACCEPTED0.09 s4details

Code

#include <iostream>
#include <stack>

inline long min(long a, long b) {return (a <= b ? a : b);}
inline long max(long a, long b) {return (a >= b ? a : b);}
inline long abs(long v) {return (v >= 0 ? v : -v);}

// custom list in order to implement combining two lists.

struct ListNode {
  long a;
  long b;
  ListNode* next;
  ListNode(long a_painter, long b_painter) {
    a = a_painter;
    b = b_painter;
    next = 0;
  }
};

struct List {
  ListNode* root;

  List() {
    root = 0;
  }

  void print() {
    ListNode* p = root;
    while(p != 0) {
      std::cout << "(" << p->a << "," << p->b << "), ";
      p = p->next;
    }
    std::cout << "\n";
  }

  void add(long a, long b, ListNode* previous) {
    ListNode* n = new ListNode(a,b);
    if (previous == 0) {
      n->next = root;
      root = n;
    } else {
      n->next = previous->next;
      previous->next = n;
    }
  }
  void add(ListNode* n, ListNode* previous) {
    if (previous == 0) {
      n->next = root;
      root = n;
    } else {
      n->next = previous->next;
      previous->next = n;
    }
  }

  List combine_worse(List other) {
    List result;
    ListNode* rl = 0;
    ListNode* otherNode = other.root;
    ListNode* thisNode = root;
    ListNode* temp = 0;
    while(true) {
      long a = max(thisNode->a, otherNode->a);
      long b = max(thisNode->b, otherNode->b);
      if (thisNode->a == a) {
        if (otherNode->a == a) {
          temp = otherNode;
          otherNode = otherNode->next;
          delete temp;
        }
        temp = thisNode;
        thisNode = thisNode->next;
      } else {
        temp = otherNode;
        otherNode = otherNode->next;
      }
      temp->a = a;
      temp->b = b;
      if (thisNode == 0 || otherNode == 0) {
        result.add(temp, rl);
        break;
      }
      long nb = max(thisNode->b, otherNode->b);
      if (nb == b) {
        continue;
      } else {
        result.add(temp, rl);
        rl = (rl == 0 ? result.root : rl->next);
      }
    }
    while(thisNode != 0) {
      temp = thisNode;
      thisNode = thisNode->next;
      delete temp;
    }
    while(otherNode != 0) {
      temp = otherNode;
      otherNode = otherNode->next;
      delete temp;
    }
    root = 0;
    other.root = 0;
    return result;
  }

  void combine_better(long a,long b) {

    if (root->a == a) {
      root->b = min(root->b, b);
      return;
    } else if (root->a > a) {
      if (root->b >= b) {
        if (root->next == 0) {
          root->a = a;
          root->b = b;
          return;
        }
        ListNode* temp = root;
        root = root->next;
        delete temp;
      }
    } else {
      if (b >= root->b) {
        return;
      }
      add(a,b,0);
      return;
    }

    ListNode* p = root;
    ListNode* c = root->next;
    while(c != 0 && c->a > a) {
      if (c->b >= b) {
        p->next = c->next;
        delete c;
      } else {
        p = c;
      }
      c = p->next;
    }
    if (c == 0) {
      ListNode* nn = new ListNode(a,b);
      p->next = nn;
    } else if (c->a == a) {
      c->b = min(b, c->b);
    } else if (c->b > b) {
      ListNode* nn = new ListNode(a,b);
      p->next = nn;
      nn->next = c;
    }
    return;
  }
};


// Augmented binary heap. Sorted like binary tree based on index, children have smaller height than their parents.
// i_s is interval start, i_e its end and min the smallest value under a node.
struct Node {
  long h;
  int i;
  long min;
  int i_s;
  int i_e;
  List list;
  Node* left;
  Node* right;
  Node* parent;
  Node(long height, int index) {
    h = height;
    i = index;
    min = h;
    i_s = index;
    i_e = index;
    left = 0;
    right = 0;
    parent = 0;
  }
};

struct TreeHeap {
  Node* root;
  TreeHeap() {
    root = 0;
  }
  Node* min_index(Node* n) {
    while(n->left != 0) {
      n = n->left;
    }
    return n;
  }
  void print(Node* n) {
    std::cout << n->h << "-" << n->min << "-" << n->i_s << "-" << n->i_e;
    if (n->left != 0) {
      std::cout << "(";
      print(n->left);
      if (n->right != 0) {
         std::cout << ",";
         print(n->right);
      }
      std::cout << ")";
    } else if (n->right != 0) {
      std::cout << "(";
      print(n->right);
      std::cout << ")";
    }
  }
  void print_tree() {
    if (root != 0) {
      print(root);
    }
    std::cout << "\n";
  }
  Node* next_index(Node* n) {
    if (n->right != 0) {
      return min_index(n->right);
    }
    while(n->parent != 0) {
      if (n == n->parent->right) {
        n = n->parent;
      } else {
        return n->parent;
      }
    }
    return 0;
  }
  void add(long h, int i) {
    Node* node = new Node(h,i);
    if (root == 0) {
      root = node;
    } else {
      Node* n = root;
      if (h >= root->h) {
        node->left = root;
        root->parent = node;
        root = node;
        return;
      }
      while (true) {
        if (n->right == 0 || n->right->h <= h) {
          if (n->right != 0) {
            n->right->parent = node;
            node->left = n->right;
          }
          n->right = node;
          node->parent = n;
          break;
        } else  {
          n = n->right;
        }
      }
    }
  }
};

// We use the following strategy:
// The highest one of any interval must go to either gardener 1 or 2. If it would go to gardener 3, we could
// Reduce the cost of that interval by painting that piece of wood with painter 1 or 2.
// If we paint it with painter 2, we can fill the rest of the interval with 1 and 2, reaching
// Minimum value easily. If we paint it with painter 1, we'll handle both of the intervals caused
// By splitting this one. This way we only need nlgn time in the average case, uneven splits
// can mess with us though, making the performance more like n squared.

// So first we find all combinations we can pay to the painters on a given interval,
// With redundant options removed, and then we combine the results for two intervals.
// When the interval is the whole wall, we can go through the list and choose the smallest price.
// After we have calculated how much we need to pay to the painters, You can just fill all of the wall pieces
// With height below or equal to painter 3's salary, and then add the two remaining painters on the intervals,
// such that painter 2's salary is low enough.

int main() {
  int count;
  std::cin >> count;
  if (count == 1) {
    long h;
    std::cin >> h;
    std::cout << h << " 1\n";
    std::cout << "1\n";

  } else {
    long* heights = new long[count];
    TreeHeap th;
    for (int i = 0; i < count; ++i) {
      long h;
      std::cin >> h;
      th.add(h, i);
      heights[i] = h;
    }

    std::stack<Node*> p;
    p.push(th.root);
    while(p.size() > 0) {
      Node* n = p.top();
      bool complete = true;
      if (n->left != 0) {
        if ((n->left->i_s == n->left->i && n->left->left != 0)
            || (n->left->i_e == n->left->i && n->left->right != 0)) {
          p.push(n->left);
          complete = false;
        } else {
          n->min = min(n->left->min, n->min);
          n->i_s = n->left->i_s;
        }
      }
      if (n->right != 0) {
        if ((n->right->i_s == n->right->i && n->right->left != 0)
            || (n->right->i_e == n->right->i && n->right->right != 0)) {
          p.push(n->right);
          complete = false;
        } else {
          n->min = min(n->right->min, n->min);
          n->i_e = n->right->i_e;
        }
      }
      if (complete) p.pop();
    }

    // Initialization complete, now calculate costs
    p.push(th.root);
    while(p.size() > 0) {
      Node* n = p.top();
      if ((n->left == 0 && n->i != 0) || (n->right == 0 && n->i != (count-1)) || (n->parent != 0 && (abs(n->parent->i - n->i) == 1))) {
        long a = n->h;
        long b = 0;
        if ((n->i - n->i_s) % 2 == 1 && n->i_s != 0) {
          b = n->left->min;
        }
        if ((n->i_e - n->i) % 2 == 1 && n->i_e != (count-1)) {
          b = max(b, n->right->min);
        }
        n->list.add(a,b,0);
        p.pop();
        continue;
      }
      bool d = true;
      if (n->left != 0 && n->left->list.root == 0) {
        p.push(n->left);
        d = false;
      }
      if (n->right != 0 && n->right->list.root == 0) {
        p.push(n->right);
        d = false;
      }
      if (d) {
        p.pop();
        if (n->left != 0) {
          if (n->right != 0) {
            n->list = n->left->list.combine_worse(n->right->list);
          } else {
            n->list = n->left->list;
          }
        } else {
          if (n->right != 0) {
            n->list = n->right->list;
          } else {
            n->list.add(n->h, 0, 0);
            continue;
          }
        }
        // Handle case where we have the 2nd painter paint the wall
        long a = n->h;
        long b = 0;
        // If the distance is odd, we need a 3 somewhere, so we put it at the Minimum.
        // This however is not necessary if both ends of the interval aren't green.
        if ((n->i - n->i_s) % 2 == 1 && n->i_s != 0) {
          b = n->left->min;
        }
        if ((n->i_e - n->i) % 2 == 1 && n->i_e != count-1) {
          b = max(b, n->right->min);
        }
        n->list.combine_better(a,b);
      }
    }
    // Now with the costs generate a solution.
    ListNode* n = th.root->list.root;
    long cost = 10e10;
    long gc = th.root->h; long gb = 0; long ga = 0;
    while(n != 0) {
      if (n->a + n->b < cost) {
        ga = n->a;
        gb = n->b;
        cost = ga + gb;
      }
      n = n->next;
    }
    std::cout << gc + gb + ga << " " << (gb > 0 ? 3 : 2) << "\n";
    for (int is = 0; is < count;) {
      bool first = true;
      int im = 0;
      int ie = is;
      for (; ie < count; ++ie) {
        if (heights[ie] <= gb) break;
        if (heights[ie] > im) { im = heights[ie]; first = ((ie - is) % 2 == 0); }
      }
      bool parity = true;
      for (int i = is; i < ie; i += 1, parity = !parity) {
        if ((parity && first) || (!parity && !first)) {
          std::cout << "1 ";
        } else {
          std::cout << "2 ";
        }
      }
      if (ie < count) {
        std::cout << "3 ";
      }
      is = ie + 1;
    }
    std::cout << "\n";
  }
}

Test details

Test 1

Group: 1

Verdict: ACCEPTED

input
10
22 54 3 91 69 90 40 29 83 71

correct output
174 3
2 1 2 1 2 1 2 1 2 1 

user output
174 2
2 1 2 1 2 1 2 1 2 1 

Test 2

Group: 1

Verdict: ACCEPTED

input
10
49 3 96 38 90 18 92 74 83 1

correct output
170 3
1 2 1 2 1 2 1 2 1 2 

user output
170 2
1 2 1 2 1 2 1 2 1 2 

Test 3

Group: 1

Verdict: ACCEPTED

input
10
46 3 41 30 16 17 12 93 80 81

correct output
173 3
2 1 2 1 2 1 2 1 2 1 

user output
173 2
2 1 2 1 2 1 2 1 2 1 

Test 4

Group: 1

Verdict: ACCEPTED

input
10
46 8 95 85 82 73 82 92 53 90

correct output
187 3
1 2 1 2 1 2 1 2 1 2 

user output
187 2
1 2 1 2 1 2 1 2 1 2 

Test 5

Group: 1

Verdict: ACCEPTED

input
10
41 18 61 59 40 96 5 2 74 38

correct output
159 3
2 1 2 1 2 1 2 3 1 2 

user output
159 3
2 1 2 1 2 1 2 3 1 2 

Test 6

Group: 1

Verdict: ACCEPTED

input
10
1 1 1 1 1 1 1 1 1 1

correct output
2 3
2 1 2 1 2 1 2 1 2 1 

user output
2 2
1 2 1 2 1 2 1 2 1 2 

Test 7

Group: 2

Verdict: ACCEPTED

input
100
1 39 94 5 24 84 84 10 78 61 38...

correct output
193 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
193 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 8

Group: 2

Verdict: ACCEPTED

input
100
31 73 18 88 49 28 66 5 32 48 9...

correct output
199 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
199 2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 9

Group: 2

Verdict: ACCEPTED

input
100
45 56 36 60 31 10 23 79 29 17 ...

correct output
198 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
198 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 10

Group: 2

Verdict: ACCEPTED

input
100
1 77 70 62 21 68 40 54 90 62 1...

correct output
194 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
194 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 11

Group: 2

Verdict:

input
100
4 47 41 81 56 64 12 10 20 100 ...

correct output
189 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
189 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 12

Group: 2

Verdict: ACCEPTED

input
10
1 1 1 1 1 1 1 1 1 1

correct output
2 3
2 1 2 1 2 1 2 1 2 1 

user output
2 2
1 2 1 2 1 2 1 2 1 2 

Test 13

Group: 3

Verdict: ACCEPTED

input
100
256160448 813097800 167146270 ...

correct output
1929869257 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
1929869257 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 14

Group: 3

Verdict:

input
100
520002672 3542567 24668528 959...

correct output
1946957555 3
1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
1946957555 3
1 3 3 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 15

Group: 3

Verdict: ACCEPTED

input
100
483158423 780224665 844754665 ...

correct output
1959373560 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
1959373560 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 16

Group: 3

Verdict: ACCEPTED

input
100
969647264 128558017 889036329 ...

correct output
1997942264 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
1997942264 2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 17

Group: 3

Verdict: ACCEPTED

input
100
745018527 400495893 635468795 ...

correct output
1961391143 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
1961391143 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 18

Group: 3

Verdict: ACCEPTED

input
10
1 1 1 1 1 1 1 1 1 1

correct output
2 3
2 1 2 1 2 1 2 1 2 1 

user output
2 2
1 2 1 2 1 2 1 2 1 2 

Test 19

Group: 4

Verdict: ACCEPTED

input
100000
197349274 775463806 263930657 ...

correct output
1999942635 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
1999942635 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 20

Group: 4

Verdict: ACCEPTED

input
100000
102296405 34648120 320393597 9...

correct output
1999930943 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

user output
1999930943 3
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

Test 21

Group: 4

Verdict: ACCEPTED

input
100000
781254921 418252056 502363453 ...

correct output
1999987794 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
1999987794 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 22

Group: 4

Verdict: ACCEPTED

input
100000
849784881 230439009 455097426 ...

correct output
1999979439 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
1999979439 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 23

Group: 4

Verdict: ACCEPTED

input
100000
851456132 13422224 537539701 4...

correct output
1999948226 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

user output
1999948226 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...

Test 24

Group: 4

Verdict: ACCEPTED

input
100000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
2 3
3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 ...

user output
2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...