#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 10123
#define NN 2000
#define EI (-1e5)
int n;
double T[N][24],dt[N][24],E[N][12],S[12],avg[12],END[N];
double mittaus[8000][24],oikea[8000][24];
double kertoimet[12][25]={
{0.11760797342252015, 0.10764119601284991, 0.07774086378704387, 0.05780730896983737, 0.02790697674404283, -0.001993355481761602, -0.021926910298964493, -0.031893687707567994, -0.04186046511616532, -0.021926910298964493, -0.01196013289036347, -0.001993355481761602, -0.01196013289036347, -0.001993355481761602, -0.001993355481761602, -0.01196013289036347, -0.031893687707567994, -0.01196013289036347, -0.01196013289036347, -0.021926910298964493, -0.021926910298964493, -0.01196013289036347, -0.001993355481761602, 0.017940199335438257, -0.13156146179359451},
{0.1568106312300269, 0.14352159468379988, 0.10365448504939184, 0.07707641195978317, 0.03720930232539044, -0.0026578073090154698, -0.029235880398619324, -0.042524916943423995, -0.05581395348822043, -0.029235880398619324, -0.01594684385381796, -0.0026578073090154698, -0.01594684385381796, -0.0026578073090154698, -0.0026578073090154698, -0.01594684385381796, -0.042524916943423995, -0.01594684385381796, -0.01594684385381796, -0.029235880398619324, -0.029235880398619324, -0.01594684385381796, -0.0026578073090154698, 0.023920265780584347, -0.17541528239145937},
{0.1960132890375336, 0.17940199335474985, 0.1295681063117398, 0.09634551494972896, 0.04651162790673805, -0.003322259136269337, -0.036544850498274155, -0.05315614617927999, -0.06976744186027553, -0.036544850498274155, -0.01993355481727245, -0.003322259136269337, -0.01993355481727245, -0.003322259136269337, -0.003322259136269337, -0.01993355481727245, -0.05315614617927999, -0.01993355481727245, -0.01993355481727245, -0.036544850498274155, -0.036544850498274155, -0.01993355481727245, -0.003322259136269337, 0.029900332225730433, -0.2192691029893242},
{0.2352159468450403, 0.21528239202569982, 0.15548172757408774, 0.11561461793967474, 0.05581395348808566, -0.003986710963523204, -0.043853820597928986, -0.06378737541513599, -0.08372093023233064, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, -0.02392026578072694, -0.003986710963523204, -0.003986710963523204, -0.02392026578072694, -0.06378737541513599, -0.02392026578072694, -0.02392026578072694, -0.043853820597928986, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, 0.035880398670876515, -0.26312292358718903},
{0.2548172757487937, 0.23322259136117482, 0.16843853820526172, 0.12524916943464764, 0.06046511627875947, -0.004318936877150139, -0.047508305647756405, -0.06910299003306399, -0.09069767441835819, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, -0.025913621262454185, -0.004318936877150139, -0.004318936877150139, -0.025913621262454185, -0.06910299003306399, -0.025913621262454185, -0.025913621262454185, -0.047508305647756405, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, 0.03887043189344956, -0.2850498338861215},
{0.274418604652547, 0.25116279069664976, 0.18139534883643568, 0.13488372092962053, 0.06511627906943326, -0.004651162790777072, -0.05116279069758382, -0.07441860465099198, -0.09767441860438573, -0.05116279069758382, -0.02790697674418143, -0.004651162790777072, -0.02790697674418143, -0.004651162790777072, -0.004651162790777072, -0.02790697674418143, -0.07441860465099198, -0.02790697674418143, -0.02790697674418143, -0.05116279069758382, -0.05116279069758382, -0.02790697674418143, -0.004651162790777072, 0.0418604651160226, -0.3069767441850539},
{0.274418604652547, 0.25116279069664976, 0.18139534883643568, 0.13488372092962053, 0.06511627906943326, -0.004651162790777072, -0.05116279069758382, -0.07441860465099198, -0.09767441860438573, -0.05116279069758382, -0.02790697674418143, -0.004651162790777072, -0.02790697674418143, -0.004651162790777072, -0.004651162790777072, -0.02790697674418143, -0.07441860465099198, -0.02790697674418143, -0.02790697674418143, -0.05116279069758382, -0.05116279069758382, -0.02790697674418143, -0.004651162790777072, 0.0418604651160226, -0.3069767441850539},
{0.2548172757487937, 0.23322259136117482, 0.16843853820526172, 0.12524916943464764, 0.06046511627875947, -0.004318936877150139, -0.047508305647756405, -0.06910299003306399, -0.09069767441835819, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, -0.025913621262454185, -0.004318936877150139, -0.004318936877150139, -0.025913621262454185, -0.06910299003306399, -0.025913621262454185, -0.025913621262454185, -0.047508305647756405, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, 0.03887043189344956, -0.2850498338861215},
{0.2548172757487937, 0.23322259136117482, 0.16843853820526172, 0.12524916943464764, 0.06046511627875947, -0.004318936877150139, -0.047508305647756405, -0.06910299003306399, -0.09069767441835819, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, -0.025913621262454185, -0.004318936877150139, -0.004318936877150139, -0.025913621262454185, -0.06910299003306399, -0.025913621262454185, -0.025913621262454185, -0.047508305647756405, -0.047508305647756405, -0.025913621262454185, -0.004318936877150139, 0.03887043189344956, -0.2850498338861215},
{0.2352159468450403, 0.21528239202569982, 0.15548172757408774, 0.11561461793967474, 0.05581395348808566, -0.003986710963523204, -0.043853820597928986, -0.06378737541513599, -0.08372093023233064, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, -0.02392026578072694, -0.003986710963523204, -0.003986710963523204, -0.02392026578072694, -0.06378737541513599, -0.02392026578072694, -0.02392026578072694, -0.043853820597928986, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, 0.035880398670876515, -0.26312292358718903},
{0.2352159468450403, 0.21528239202569982, 0.15548172757408774, 0.11561461793967474, 0.05581395348808566, -0.003986710963523204, -0.043853820597928986, -0.06378737541513599, -0.08372093023233064, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, -0.02392026578072694, -0.003986710963523204, -0.003986710963523204, -0.02392026578072694, -0.06378737541513599, -0.02392026578072694, -0.02392026578072694, -0.043853820597928986, -0.043853820597928986, -0.02392026578072694, -0.003986710963523204, 0.035880398670876515, -0.26312292358718903},
{0.21561461794128697, 0.19734219269022485, 0.14252491694291378, 0.10598006644470186, 0.051162790697411864, -0.003654485049896271, -0.040199335548101574, -0.05847176079720799, -0.07674418604630309, -0.040199335548101574, -0.021926910298999697, -0.003654485049896271, -0.021926910298999697, -0.003654485049896271, -0.003654485049896271, -0.021926910298999697, -0.05847176079720799, -0.021926910298999697, -0.021926910298999697, -0.040199335548101574, -0.040199335548101574, -0.021926910298999697, -0.003654485049896271, 0.032890365448303475, -0.24119601328825663},
};
void luedata(){
ifstream in;
in.open("sample_data.txt");
int Nn;
in>>Nn;
for(int i=0;i<8000;++i){
for(int h=0;h<24;++h) in>>mittaus[i][h];
for(int h=0;h<12;++h) in>>oikea[i][h];
}
in.close();
}
void lineaarinen_ennuste(int i){
for(int h=0;h<12;++h){
E[i][h]=kertoimet[h][24];
END[i]=1;
for(int k=0;k<24;++k) E[i][h]+=T[i][k]*kertoimet[h][k];
}
}
void ennusta(int i){
double mabs=100,mval=100,minval=100,maxval=-100,avg=0;
for(int h=0;h<23;++h){
dt[i][h]=T[i][h+1]-T[i][h];
}
END[i]=7;
for(int h=0;h<24;++h){
if(abs(T[i][h])<mabs){
mabs=abs(T[i][h]);
mval=T[i][h];
}
minval=min(minval,T[i][h]);
maxval=max(maxval,T[i][h]);
avg+=T[i][h];
}
avg/=24;
if(maxval-minval<3.2){
END[i]=12;
} else if(maxval-minval<6){
END[i]=9;
}
if(maxval-minval>9){
END[i]=5;
}
double ts=T[i][23];//,deltat=dt[i][0];
int e=4;
for(int h=0;h<e;++h){
E[i][h]=ts;
}
double k=(ts-mval)/(e-1-12);
for(int h=e;h<12;++h){
ts+=k;
//ts+=deltat;
//deltat=kk(ts,deltat,h);
E[i][h]=ts;
//E[i][h]=(1.5*ts+0.5*T[i][h]+0.5*avg)/2.5;
//E[i][h]=avg;
S[h]+=E[i][h];
}
}
void solve(){
for(int i=0;i<n;++i){
//ennusta(i);
lineaarinen_ennuste(i);
}
}
void simulaatio(){
luedata();
n=8000;
for(int i=0;i<n;++i){
for(int h=0;h<24;++h){
T[i][h]=mittaus[i][h];
}
}
solve();
double s=0;
for(int i=0;i<n;++i){
int a=0,b=0;
for(int h=0;h<END[i];++h){
double d=abs(E[i][h]-oikea[i][h]);
if(d<0.75){
++a;
} else if(d>=2.05){
++b;
}
}
s+=min(25*max(a-b,0),100);
}
s/=n;
cout<<s<<'\n';
}
void prosentti(){
luedata();
n=1000;
double p=0;
ofstream out;
out.open("weather_output");
for(int i=0;i<n;++i){
for(int h=0;h<24;++h){
T[i][h]=mittaus[i][h];
}
}
for(int i=0;i<n;++i){
//ennusta(i);
lineaarinen_ennuste(i);
int a=0,b=0;
for(int h=0;h<END[i];++h){
double d=abs(E[i][h]-oikea[i][h]);
if(d<0.75){
++a;
} else if(d>=2.05){
++b;
}
}
p+=max(0,a-b);
if(a-b<3){
for(int h=0;h<24;++h) out<<mittaus[i][h]<<' ';
for(int h=0;h<12;++h) out<<oikea[i][h]<<' ';
out<<'\n';
for(int h=0;h<12;++h) out<<E[i][h]<<' ';
out<<'\n';
}
}
out.close();
cerr<<p/(12*n)<<'\n';
}
void ratkaisu(){
cin>>n;
for(int i=0;i<n;++i){
for(int h=0;h<24;++h) cin>>T[i][h];
}
solve();
for(int i=0;i<n;++i){
int e=END[i];
for(int h=0;h<e;++h){
printf("%.1f ",E[i][h]);
}
for(int h=e;h<12;++h){
printf("? ");
}
}
puts("");
}
int main(){
//srand(time(NULL));
cin.tie(0)->sync_with_stdio(0);
ratkaisu();
//prosentti();
//simulaatio();
}