CSES - Aalto Competitive Programming 2024 - wk2 - Homework - Results
Submission details
Task:Apartments
Sender:peik-e
Submission time:2024-09-11 13:53:43 +0300
Language:C++ (C++20)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.01 sdetails
#3ACCEPTED0.00 sdetails
#4ACCEPTED0.00 sdetails
#50.92 sdetails
#60.92 sdetails
#70.92 sdetails
#80.92 sdetails
#9ACCEPTED0.00 sdetails
#10ACCEPTED0.00 sdetails
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.01 sdetails
#13--details
#14--details
#15--details
#16--details
#17ACCEPTED0.23 sdetails
#18ACCEPTED0.00 sdetails
#19ACCEPTED0.00 sdetails

Code

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iostream>
#include <iterator>
#include <limits>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace std;

template <typename T>
std::ostream &operator<<(std::ostream &os, const vector<T> &obj) {
    bool first = true;
    for (const auto &o : obj) {
        if (first) {
            cout << o;
            first = false;
        } else {
            cout << ' ' << o;
        }
    }
    cout << endl;
    return os;
}

std::ostream &operator<<(std::ostream &os, const vector<pair<int, int>> &obj) {
    for (const auto &o : obj) {
        cout << o.first << ' ' << o.second << endl;
    }
    cout << endl;
    return os;
}

// {adjacent, adjacents_idx(self), weight}
vector<vector<tuple<int, int, int>>> adjacency;
set<int> seen;
int source, drain;

bool _ff_dfs(int node, vector<tuple<int, int, int> *> &out) {
    seen.insert(node);
    // cout << "dfs(" << node << ')' << endl;
    for (auto &adj : adjacency[node]) {
        auto &[nb, rev, w] = adj;
        // cout << "nb: " << nb << endl;
        if (w <= 0) {
            // cout << "zero w" << endl;
            continue;
        }
        if (seen.contains(nb)) {
            // cout << "visited" << endl;
            continue;
        }
        // cout << ">" << endl;
        if (nb == drain || _ff_dfs(nb, out)) {
            out.push_back(&adj);
            // cout << "<" << endl;
            return true;
        }
        // cout << "<" << endl;

        // cout << ">" << endl;
        // if (_ff_dfs(nb, out)) {
        //     out.push_back(&adj);
        //     return true;
        // }
        // cout << "<" << endl;
    }
    return false;
}
float max_flow() {
    float total = 0;
    vector<tuple<int, int, int> *> path_weights;
    while (_ff_dfs(source, path_weights)) {
        // cout << "dfs ran" << endl;
        seen.clear();
        int minimum = numeric_limits<int>::max();
        for (const auto ptr : path_weights) {
            int w = get<2>(*ptr);
            minimum = min(w, minimum);
        }
        // cout << "minimum: " << minimum << endl;
        for (auto ptr : path_weights) {
            auto &[nb, rev, w] = *ptr;
            auto &rev_w = get<2>(adjacency[nb][rev]);
            w -= minimum;
            rev_w += minimum;
        }
        total += minimum;
        // cout << "total: " << total << endl;
        path_weights.clear();
    }
    return total;
}

// struct FordFulkerson {
//     vector<vector<pair<int, float>>> edges;
//     int source;
//     int drain;
//     set<int> visited;
//
//     FordFulkerson(vector<vector<pair<int, float>>> edges, int source, int
//     drain)
//         : edges{edges}, source(source), drain(drain), visited() {}
//
//     // void debug() {
//     //     cout << '{';
//     //     for (auto x : visited) {
//     //         cout << x << ',';
//     //     }
//     //     cout << '}' << endl;
//     // }
//
//     bool dfs(int node, vector<float *> &out_fwd) {
//         visited.insert(node);
//         cout << "dfs(" << node << ')' << endl;
//         for (auto &[nb, w] : edges[node]) {
//             cout << "nb: " << nb << endl;
//             // if (w <= 0 || visited.contains(nb))
//             //     continue;
//             // debug();
//             if (w <= 0) {
//                 // cout << "zero w" << endl;
//                 continue;
//             }
//             if (visited.contains(nb)) {
//                 // cout << "visited" << endl;
//                 continue;
//             }
//
//             if (nb == drain) {
//                 out_fwd.push_back(&w);
//                 // cout << "found drain" << endl;
//                 return true;
//             }
//
//             cout << ">" << endl;
//             if (dfs(nb, out_fwd)) {
//                 out_fwd.push_back(&w);
//                 return true;
//             }
//             cout << "<" << endl;
//         }
//         return false;
//     }
//
//     float solve() {
//         float total = 0;
//         vector<float *> path_weights;
//         while (dfs(source, path_weights)) {
//             // cout << "dfs ran" << endl;
//             visited.clear();
//             float minimum = INFINITY;
//             for (const auto ptr : path_weights) {
//                 minimum = min(*ptr, minimum);
//             }
//             cout << "minimum: " << minimum << endl;
//             for (auto ptr : path_weights) {
//                 (*ptr) -= minimum;
//             }
//             total += minimum;
//             cout << "total: " << total << endl;
//             path_weights.clear();
//         }
//         return total;
//     }
// };

int matchings(int left, int right, const vector<pair<int, int>> &edges) {
    adjacency = vector<vector<tuple<int, int, int>>>(
        left + right + 2, vector<tuple<int, int, int>>(0));
    // cout << edges;
    source = left + right;
    drain = left + right + 1;
    for (int i = 0; i < left; ++i) {
        int a = source;
        int b = i;
        int rev_f = adjacency[b].size();
        int rev_b = adjacency[source].size();
        adjacency[a].push_back({b, rev_f, 1});
        adjacency[b].push_back({a, rev_b, 0});
    }
    for (int i = 0; i < right; ++i) {
        int a = left + i;
        int b = drain;
        int rev_f = adjacency[drain].size();
        int rev_b = adjacency[a].size();
        adjacency[a].push_back({b, rev_f, 1});
        adjacency[b].push_back({a, rev_b, 0});
    }
    // cout << "sources, drains" << endl;
    for (const auto &e : edges) {
        int a = e.first;
        int b = e.second + left;
        int rev_f = adjacency[b].size();
        int rev_b = adjacency[a].size();
        adjacency[a].push_back({b, rev_f, 1});
        adjacency[b].push_back({a, rev_b, 0});
    }
    // for (int e = 0; e < left + right + 2; ++e) {
    //     cout << "edge: " << e << endl;
    //     for (auto adj : E[e]) {
    //         cout << adj.first << ", w: " << adj.second << endl;
    //     }
    // }
    // cout << "Running FF" << endl;
    // return FordFulkerson(E, source, drain).solve();
    return max_flow();
}

int main(int argc, char **argv) {
    int n, m, k;
    cin >> n >> m >> k;

    // int desired_size[n];
    // int sizes[m];
    vector<int> desired_size(n);
    vector<int> sizes(m);
    for (int i = 0; i < n; ++i)
        cin >> desired_size[i];
    for (int i = 0; i < m; ++i)
        cin >> sizes[i];

    sort(sizes.begin(), sizes.end());
    vector<pair<int, int>> edges;
    for (int i = 0; i < n; ++i) {
        int des = desired_size[i];

        auto lo = lower_bound(sizes.begin(), sizes.end(), des - k);
        auto hi = upper_bound(sizes.begin(), sizes.end(), des + k);
        for (; lo < hi; ++lo) {
            edges.push_back({i, distance(sizes.begin(), lo)});
        }
    }
    cout << matchings(n, m, edges) << endl;
}

Test details

Test 1

Verdict: ACCEPTED

input
10 10 0
37 62 56 69 34 46 10 86 16 49
50 95 47 43 9 62 83 71 71 7

correct output
1

user output
1

Test 2

Verdict: ACCEPTED

input
10 10 10
90 41 20 39 49 21 35 31 74 86
14 24 24 7 82 85 82 4 60 95

correct output
6

user output
6

Test 3

Verdict: ACCEPTED

input
10 10 1000
59 5 65 15 42 81 58 96 50 1
18 59 71 65 97 83 80 68 92 67

correct output
10

user output
10

Test 4

Verdict: ACCEPTED

input
10 10 1000000000
25 80 59 43 67 21 77 5 8 99
66 41 62 24 88 55 1 53 50 60

correct output
10

user output
10

Test 5

Verdict:

input
200000 200000 0
34 48 12 99 89 71 20 7 9 38 58...

correct output
197286

user output
(empty)

Test 6

Verdict:

input
200000 200000 10
89 26 46 74 91 19 47 18 83 85 ...

correct output
200000

user output
(empty)

Test 7

Verdict:

input
200000 200000 1000
71 84 11 90 70 59 60 11 52 65 ...

correct output
200000

user output
(empty)

Test 8

Verdict:

input
200000 200000 1000000000
21 94 92 4 12 5 38 47 59 92 2 ...

correct output
200000

user output
(empty)

Test 9

Verdict: ACCEPTED

input
10 10 0
727245017 647121519 549745115 ...

correct output
0

user output
0

Test 10

Verdict: ACCEPTED

input
10 10 10
30734435 218114477 257355293 4...

correct output
0

user output
0

Test 11

Verdict: ACCEPTED

input
10 10 1000
7899629 162004163 327616450 51...

correct output
0

user output
0

Test 12

Verdict: ACCEPTED

input
10 10 1000000000
725746771 537157640 742868604 ...

correct output
10

user output
10

Test 13

Verdict:

input
200000 200000 0
375495587 322263536 985991668 ...

correct output
42

user output
(empty)

Test 14

Verdict:

input
200000 200000 10
906603621 968136956 666786366 ...

correct output
846

user output
(empty)

Test 15

Verdict:

input
200000 200000 1000
215460174 880023362 242442952 ...

correct output
57149

user output
(empty)

Test 16

Verdict:

input
200000 200000 1000000000
50349580 773460492 440699400 8...

correct output
200000

user output
(empty)

Test 17

Verdict: ACCEPTED

input
199999 1 1
199996 199997 149999 117797 19...

correct output
1

user output
1

Test 18

Verdict: ACCEPTED

input
5 2 2
2 2 2 40 50
40 50

correct output
2

user output
2

Test 19

Verdict: ACCEPTED

input
4 3 5
60 45 80 60
30 60 75

correct output
2

user output
2