#include<bits/stdc++.h>
using namespace std;
#define V 200001
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
void printSolution(int dist[])
{
printf("Vertex \t\t Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d \t\t %d\n", i, dist[i]);
}
void dijkstra(int graph[V][V], int src, int dest)
{
int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u] + graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
cout << dist[dest];
}
int main() {
// ios_base::sync_with_stdio(true);
// cin.tie();
int n;
string line;
getline(cin, line);
stringstream split_n(line);
split_n >> n;
getline(cin, line);
stringstream split_d(line);
getline(cin, line);
stringstream split_c(line);
// cin >> n;
int d[n];
int c[n];
int graph[V][V];
// for (int i = 0; i < n; i++)
// cin >> d[i];
// for (int i = 1; i < n; i++)
// cin >> c[i];
split_d >> d[0];
for (int i = 1; i < n; i++) {
split_d >> d[i];
split_c >> c[i];
// }
d[n] = 0;
c[n] = 0;
for (int i = 0; i <= n; i++) {
for (int j = i+1; j <= min(i+d[i],n); j++) {
graph[i][j] = c[j];
}
}
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
cout << graph[i][j] << " ";
}
cout << endl;
}
dijkstra(graph, 0, n-1);
}