CSES - Datatähti 2024 alku - Results
Submission details
Task:Säähavainnot
Sender:YourUncle
Submission time:2023-11-05 20:33:00 +0200
Language:Python3 (CPython3)
Status:READY
Result:0
Feedback
groupverdictscore
#10
Test results
testverdicttimescore
#10.02 s0details
#20.02 s0details
#30.02 s0details
#40.02 s0details
#50.02 s0details
#60.02 s0details
#70.02 s0details
#80.02 s0details

Code

import pandas as pd
from sklearn.linear_model import LinearRegression
import numpy as np
# import matplotlib.pyplot as plt
import random
data = pd.read_csv(f"data_mod.csv", delimiter=' ')
def calculate_temperature(hours, amount):
data = pd.read_csv(f"data_mod.csv", delimiter=' ')
x = np.array(data[[str(x) for x in range(24)]])
y = np.array(data[[str(x) for x in range(24, 36)]])
model = LinearRegression().fit(x, y)
predictions = model.predict(np.array([hours], dtype=object))
predictions=predictions[0]
# predictions = [predictions[0][x] for x in range(amount)]
return predictions
def testing(real, prediction):
# print(len(real))
# print(len(prediction))
oikein = 0
väärin = 0
ei_dataa = 0
# if prediction == False:
# return (0, 0, 12)
for i in range(len(real)):
if prediction[i] == False:
ei_dataa += 1
else:
erotus = abs(real[i]-prediction[i])
if erotus < 0.75:
oikein += 1
elif erotus > 0.7 and erotus < 2.05:
ei_dataa += 1
else:
väärin += 1
return (oikein, väärin, ei_dataa)
def setup():
n = int(input())
# a = "2.6 2.5 2.3 2.2 2.1 2.1 1.8 1.5 1.2 1.1 1.2 1.1 1 1.3 1.5 1.3 1 1.1 1 0.9 1 0.7 1.1 1.5"
takas = []
lista = []
for i in range(n):
lista.append([float(x) for x in input().split()])
for i in lista:
tulos = [str(x) for x in calculate_temperature(np.array(data.iloc[i][[str(x) for x in range(24)]]), 12)]
takas.append(" ".join(tulos))
for i in takas:
print(i)
def results(amount):
tulos = (0, 0, 0)
start = random.randint(1, 4000)
for i in range(start, start+amount):
tulos= tuple(map(lambda i, j: i + j, tulos, testing(np.array(data.iloc[i][[str(x) for x in range(24, 36)]]),calculate_temperature(np.array(data.iloc[i][[str(x) for x in range(24)]]), 12))))
return tulos
# AMOUNT = 100
# result = results(AMOUNT)
# print(result)
# print(25*(result[0]-result[1])/AMOUNT)

Test details

Test 1

Verdict:

input
1000
-0.4 -0.1 -0.2 -0.3 -0.4 -0.5 ...

correct output
0.4 0.4 0.5 0.8 0.9 1.1 1.3 1....

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 2

Verdict:

input
1000
2.9 2.9 2.9 2.1 2.6 2 2 2.2 2....

correct output
2.3 1.6 1.5 1.1 1 0.7 0.6 0.8 ...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 3

Verdict:

input
1000
6.6 6 6.4 6 4.6 4.6 4.2 4.3 4....

correct output
10 10.9 10.3 10.1 9.1 7.3 5.7 ...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 4

Verdict:

input
1000
19.4 20.2 19.1 18.9 18.3 17.3 ...

correct output
18 18.2 17 17.5 17.2 16.2 12 8...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 5

Verdict:

input
1000
-5.7 -5.8 -5.8 -5.9 -7.1 -6.9 ...

correct output
-4.2 -4.1 -4 -3.8 -3.5 -3.2 -3...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 6

Verdict:

input
1000
14.8 14.8 15.4 12.9 11.8 9.7 9...

correct output
11.8 11 11.6 10.8 10.4 10.4 10...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 7

Verdict:

input
1000
0.7 1 2 1.4 0.6 -0.4 -0.9 -0.7...

correct output
-1.3 -0.5 -0.6 -1 -3.2 -7.2 -6...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...

Test 8

Verdict:

input
1000
15.1 15.3 14.9 14.4 14.4 13.7 ...

correct output
15.6 15.9 16 15.2 14.6 14.4 13...

user output
(empty)

Error:
Traceback (most recent call last):
  File "/box/input/code.py", line 1, in <module>
    im...