When the data contains the observations (x_1,y_1),(x_2,y_2),\dots,(x_n,y_n) and the line y=ax+b is fitted to the data, the error can be computed with the sum of squares formula
\sum_{i=1}^{n}(y_i-(ax_i+b))^2.
For example, when the data is (1,1),(3,2),(5,3) and the line is y=x-1 (i.e., a=1 and b=-1), the error is
(1-(1-1))^2+(2-(3-1))^2+(3-(5-1))^2=2.
Implement a class SquareSum
with the methods
add(x, y)
: add an observation to the datacalc(a, b)
: return the sum of squares error for the given line parameters
The time complexity of both methods should be O(1).
In a file squaresum.py
, implement a class SquareSum
according to the following template:
class SquareSum: def __init__(self): # TODO def add(self, x, y): # TODO def calc(self, a, b): # TODO if __name__ == "__main__": s = SquareSum() s.add(1, 1) s.add(3, 2) s.add(5, 3) print(s.calc(1, 0)) # 5 print(s.calc(1, -1)) # 2 print(s.calc(0.5, 0.5)) # 0 s.add(4, 2) print(s.calc(0.5, 0.5)) # 0.25