**Time limit:**1.00 s**Memory limit:**512 MB

You can either lengthen and shorten each stick. Both operations cost $x$ where $x$ is the difference between the new and original length.

What is the minimum total cost?

**Input**

The first input line contains an integer $n$: the number of sticks.

Then there are $n$ integers: $p_1,p_2,\ldots,p_n$: the lengths of the sticks.

**Output**

Print one integer: the minimum total cost.

**Constraints**

- $1 \le n \le 2 \cdot 10^5$

- $1 \le p_i \le 10^9$

**Example**

Input:

`5`

2 3 1 5 2

Output:

`5`