CSES - Datatähti 2025 alku - Results
Submission details
Task:Kortit II
Sender:rottis
Submission time:2024-11-04 14:18:05 +0200
Language:Ruby
Status:READY
Result:8
Feedback
groupverdictscore
#1ACCEPTED3
#2ACCEPTED5
#30
#40
#50
Test results
testverdicttimegroup
#1ACCEPTED0.08 s1, 2, 3, 4, 5details
#2ACCEPTED0.45 s2, 3, 4, 5details
#3--3, 4, 5details
#4--4, 5details
#5--5details
#6--5details

Code

mod_by = 10**9 + 7

def factorial(n)
  (1..n).reduce(1, :*)
end

def choose(a, b)
  # a choose b
  (factorial(a) / (factorial(b) * factorial(a-b))).to_i
end

def slow_ass_recursive_function(played_moves, moves_left, p1_wins)
  if moves_left.length == 0
    p1_wins_calc = 0
    played_moves.each_with_index do |move, idx|
      if move < idx + 1
        p1_wins_calc += 1
      end
      if p1_wins_calc > p1_wins
        return 0
      end
    end
    if p1_wins_calc < p1_wins
      return 0
    else
      return 1
    end
  end

  total = 0
  played_moves_len = played_moves.length + 1
  moves_left.each do |move|
    if move == played_moves_len
      next
    end
    total += slow_ass_recursive_function(played_moves + [move], moves_left - [move], p1_wins)
  end
  return total
end

row_count = gets.chomp.to_i
rows = []
row_count.times do
  rows.append(gets.chomp.split(" ").map(&:to_i))
end

rows.each do |row|
  n = row[0]
  original_n = n
  p1_wins = row[1]
  p2_wins = row[2]
  p1_moves = []
  p2_moves = []

  if p1_wins + p2_wins > n
    puts(0)
    next
  end

  draws = n - p1_wins - p2_wins
  
  # we need to choose "draws" from n
  # ways_to_draw = n choose draws
  # this gives us the number of possible choices of numbers to draw with
  # in the end you should multiply this with ways_to_choose_other_numbers and multiply it by its factorial (unique orderings of the solution)
  ways_to_choose_drawing_numbers = choose(n, draws)
  
  n -= draws
  
  if (p1_wins + p2_wins > 0) && (p1_wins == 0 || p2_wins == 0)
    puts(0)
    next
  end

  ways_to_choose_other_numbers = slow_ass_recursive_function([], (1..n).to_a, p1_wins)

  # code here
  # note: we can fix p1 moves to be [0...n] since the permutations of the final moves are already accounted for
  
  # start => n! * draws * other
  # 3 1 2 => 3! * 1 * 1
  # 2 0 1 => 0
  # 5 2 2 => 5! * 5 * 7
  # note: f(2, 2) => 7
  # 9 3 5 => 9! * 9 * 3361
  # note: f(3, 5) => 3361
  # 4 4 1 => 0

  puts(
    (ways_to_choose_drawing_numbers * ways_to_choose_other_numbers * factorial(original_n)) % (mod_by)
  )
end

Test details

Test 1

Group: 1, 2, 3, 4, 5

Verdict: ACCEPTED

input
54
4 4 0
3 1 3
3 2 2
4 0 4
...

correct output
0
0
0
0
0
...

user output
0
0
0
0
0
...

Test 2

Group: 2, 3, 4, 5

Verdict: ACCEPTED

input
284
6 1 0
5 0 2
7 1 5
7 7 5
...

correct output
0
0
35280
0
36720
...

user output
0
0
35280
0
36720
...

Test 3

Group: 3, 4, 5

Verdict:

input
841
19 3 12
19 19 13
19 7 13
20 11 15
...

correct output
40291066
0
0
0
0
...

user output
(empty)

Test 4

Group: 4, 5

Verdict:

input
1000
15 12 6
7 1 6
44 4 26
6 6 5
...

correct output
0
5040
494558320
0
340694548
...

user output
(empty)

Test 5

Group: 5

Verdict:

input
1000
892 638 599
966 429 655
1353 576 1140
1403 381 910
...

correct output
0
0
0
249098285
0
...

user output
(empty)

Test 6

Group: 5

Verdict:

input
1000
2000 1107 508
2000 1372 249
2000 588 65
2000 1739 78
...

correct output
750840601
678722180
744501884
159164549
868115056
...

user output
(empty)