| Task: | Kortit II | 
| Sender: | rottis | 
| Submission time: | 2024-11-01 23:36:50 +0200 | 
| Language: | Ruby | 
| Status: | READY | 
| Result: | 0 | 
| group | verdict | score | 
|---|---|---|
| #1 | WRONG ANSWER | 0 | 
| #2 | WRONG ANSWER | 0 | 
| #3 | WRONG ANSWER | 0 | 
| #4 | WRONG ANSWER | 0 | 
| #5 | WRONG ANSWER | 0 | 
| test | verdict | time | group | |
|---|---|---|---|---|
| #1 | WRONG ANSWER | 0.07 s | 1, 2, 3, 4, 5 | details | 
| #2 | WRONG ANSWER | 0.45 s | 2, 3, 4, 5 | details | 
| #3 | TIME LIMIT EXCEEDED | -- | 3, 4, 5 | details | 
| #4 | TIME LIMIT EXCEEDED | -- | 4, 5 | details | 
| #5 | TIME LIMIT EXCEEDED | -- | 5 | details | 
| #6 | TIME LIMIT EXCEEDED | -- | 5 | details | 
Code
mod_by = 10**9 + 7
def factorial(n)
  (1..n).reduce(1, :*)
end
def choose(a, b)
  # a choose b
  (factorial(a) / (factorial(b) * factorial(a-b))).to_i
end
def recursive_get_ways(chosen_nums, choices, p1_wins)
  if choices.empty?
    p1_wins_calc = 0
    chosen_nums.each_with_index do |num, ind|
      if num > ind + 1
        p1_wins_calc += 1
      end
    end
    if p1_wins == p1_wins_calc
#      p "found!"
#      p chosen_nums
      return 1
    else
      return 0
    end
  else
    total = 0
    choices.each do |choice|
      # optimize by avoiding draws
      if choice == chosen_nums.length + 1
        next
      end
      total += recursive_get_ways(chosen_nums + [choice], choices - [choice], p1_wins)
    end
    return total
  end
end
row_count = gets.chomp.to_i
rows = []
row_count.times do
  rows.append(gets.chomp.split(" ").map(&:to_i))
end
rows.each do |row|
  n = row[0]
  original_n = n
  p1_wins = row[1]
  p2_wins = row[2]
  p1_moves = []
  p2_moves = []
  if p1_wins + p2_wins > n
    puts(0)
    next
  end
  draws = n - p1_wins - p2_wins
  
  # we need to choose "draws" from n
  # ways_to_draw = n choose draws
  # this gives us the number of possible choices of numbers to draw with
  # in the end you should multiply this with ways_to_choose_other_numbers and multiply it by its factorial (unique orderings of the solution)
  ways_to_choose_drawing_numbers = choose(n, draws)
  
  n -= draws
  
  if (p1_wins + p2_wins > 0) && (p1_wins == 0 || p2_wins == 0)
    puts(0)
    next
  end
  ways_to_choose_other_numbers = recursive_get_ways([], (0...n).to_a, p1_wins)
  # code here
  # note: we can fix p1 moves to be [0...n] since the permutations of the final moves are already accounted for
  # brute-force: n! (too slow. 24000 for first part and others are no easier)
  # too many....
  # brute force not enough
  # we can (maybe) assume the first moves[p2_wins] are p2 wins and the last moves[p1_wins] are p1 wins
  # 
  
  puts(
    (ways_to_choose_drawing_numbers * ways_to_choose_other_numbers * factorial(original_n)) % (mod_by)
  )
endTest details
Test 1
Group: 1, 2, 3, 4, 5
Verdict: WRONG ANSWER
| input | 
|---|
| 54 4 4 0 3 1 3 3 2 2 4 0 4 ...  | 
| correct output | 
|---|
| 0 0 0 0 0 ...  | 
| user output | 
|---|
| 0 0 0 0 0 ...  | 
Test 2
Group: 2, 3, 4, 5
Verdict: WRONG ANSWER
| input | 
|---|
| 284 6 1 0 5 0 2 7 1 5 7 7 5 ...  | 
| correct output | 
|---|
| 0 0 35280 0 36720 ...  | 
| user output | 
|---|
| 0 0 1834560 0 131040 ...  | 
Test 3
Group: 3, 4, 5
Verdict: TIME LIMIT EXCEEDED
| input | 
|---|
| 841 19 3 12 19 19 13 19 7 13 20 11 15 ...  | 
| correct output | 
|---|
| 40291066 0 0 0 0 ...  | 
| user output | 
|---|
| (empty) | 
Test 4
Group: 4, 5
Verdict: TIME LIMIT EXCEEDED
| input | 
|---|
| 1000 15 12 6 7 1 6 44 4 26 6 6 5 ...  | 
| correct output | 
|---|
| 0 5040 494558320 0 340694548 ...  | 
| user output | 
|---|
| (empty) | 
Test 5
Group: 5
Verdict: TIME LIMIT EXCEEDED
| input | 
|---|
| 1000 892 638 599 966 429 655 1353 576 1140 1403 381 910 ...  | 
| correct output | 
|---|
| 0 0 0 249098285 0 ...  | 
| user output | 
|---|
| (empty) | 
Test 6
Group: 5
Verdict: TIME LIMIT EXCEEDED
| input | 
|---|
| 1000 2000 1107 508 2000 1372 249 2000 588 65 2000 1739 78 ...  | 
| correct output | 
|---|
| 750840601 678722180 744501884 159164549 868115056 ...  | 
| user output | 
|---|
| (empty) | 
