CSES - Datatähti 2025 alku - Results
Submission details
Task:Kortit II
Sender:Pikaksi
Submission time:2024-10-30 19:18:20 +0200
Language:C++ (C++20)
Status:READY
Result:8
Feedback
groupverdictscore
#1ACCEPTED3
#2ACCEPTED5
#30
#40
#50
Test results
testverdicttimegroup
#1ACCEPTED0.00 s1, 2, 3, 4, 5details
#2ACCEPTED0.00 s2, 3, 4, 5details
#30.01 s3, 4, 5details
#40.00 s4, 5details
#50.00 s5details
#60.00 s5details

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
/*
draw possibilities:
cards
draws
location combinations of victories and draws:
(draws)_cards
Combinations for draws not placement:
draws!
Combinations for victory positions in list:
(victories)_p1
Combinations for ordering p1 and p2 wins seperately wins:
p1! * p2!
current best: binom(c; d)*binom(c; d)*d!*binom(p1+p2;p1)*p1!*p2!*binom(p1+p2;p1)
better:
binom(c; d)*binom(c; d)*d!*(p1+p2)!*3361
*/
const ll ansMod = 1000000007;
const int g_p1 = 7;
const int g_p2 = 4;
const int C = g_p1 + g_p2;
int comparison[C];
int globalCount = 0;
// T\left(n{,}k\right)=\sum_{j=0}^n\binom{-j-1}{-n-1}\cdot eulerian1(j{,}k)
// T\left(n{,}k\right)=\sum_{u=0}^k(-1)^u\cdot\binom{n+1}{u}\cdot(k+1-u)^n
// T\left(n{,}k\right)=\sum_{j=0}^n\left(\binom{-j-1}{-n-1}\cdot\sum_{u=0}^k\left((-1)^u\cdot\binom{j+1}{u}\cdot(k+1-u)^n\right)\right)
ll factorial(ll a)
{
if (a == 0) {
return 1;
}
ll negative = 1;
if (a < 0) {
if (a & 1) {
negative = -1;
}
a *= -1;
}
ll aCopy = a;
for (ll i = 1; i < aCopy; i++) {
a *= i;
}
return a * negative;
}
ll binomial(ll a, ll b)
{
if (a < 0) {
if (b >= 0) {
return pow(-1, b) * binomial(b - a - 1, b);
}
return pow(-1, a - b) * binomial(-b - 1, a - b);
}
ll a1 = factorial(a);
ll a2 = factorial(b);
ll a3 = factorial(a - b);
//cout << "binom a1 " << a1 << " a2 " << a2 << " a3 " << a3 << "\n";
return a1 / (a2 * a3);
}
ll eulerian(ll n, ll k) {
ll ans = 0;
for (ll j = 0; j < k + 1; j++) {
ll loopAns = pow(-1, j);
loopAns *= binomial(n + 1, j);
loopAns *= pow(k + 1 - j, n);
ans += loopAns;
}
return ans;
}
ll playerWinCombinations(ll n, ll k)
{
if (n < 2 || k < 2) {
return 1;
}
n += k - 2;
if (k > n) {
ll temp = n;
n = k;
k = temp;
}
n += 2;
ll ans = 0;
for (ll j = 0; j < n + 1; j++) {
ll E1 = eulerian(j, k);
E1 *= binomial(-j - 1, -n - 1);
ans += E1;
ans %= ansMod;
}
return ans;
}
bool containsNumber(int numbersUsed[C], int number)
{
for (int i = 0; i < C; i++) {
if (numbersUsed[i] == number) {
return true;
}
}
return false;
}
void testBruteForce(int numbersUsed[C])
{
/*cout << "called with ";
for (int i = 0; i < C; i++) {
cout << numbersUsed[i];
}
cout << "\n";*/
bool allUsed = true;
for (int i = 0; i < C; i++) {
if (numbersUsed[i] == 0) {
allUsed = false;
for (int newNum = 1; newNum < C + 1; newNum++) {
if (comparison[i] != newNum && !containsNumber(numbersUsed, newNum)) {
numbersUsed[i] = newNum;
testBruteForce(numbersUsed);
}
}
numbersUsed[i] = 0;
break;
}
}
if (!allUsed) {
return;
}
int larger = 0, smaller = 0;
for (int i = 0; i < C; i++) {
if (numbersUsed[i] < comparison[i]) {
smaller++;
}
else if (numbersUsed[i] > comparison[i]) {
larger++;
}
}
if (smaller == g_p1 && larger == g_p2) {
globalCount++;
}
}
void SolveCase(int cards, int p1, int p2)
{
int draws = cards - p1 - p2;
string ans1;
string ans2;
if (p1 + p2 > cards) {
cout << "0\n";
return;
}
if ((p1 > 0 && p2 == 0) || (p2 > 0 && p1 == 0)) {
cout << "0\n";
return;
}
ll ans = binomial(cards, draws);
ans *= ans;
ans *= factorial(draws);
ans *= factorial(p1 + p2);
ans *= playerWinCombinations(p1, p2);
/*cout << binomial(cards, draws) << "\n";
cout << factorial(draws) << "\n";
cout << factorial(p1 + p2) << "\n";
cout << playerWinCombinations(p1, p2) << "\n";*/
cout << ans % ansMod << "\n";
}
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
/*for (int i = 0; i < C; i++) {
comparison[i] = i + 1;
}
int test[C];
for (int i = 0; i < C; i++) {
test[i] = 0;
}
testBruteForce(test);
cout << globalCount << "\n";
cout << playerWinCombinations(g_p1, g_p2) << "\n";
return 0;*/
//SolveCase(9, 3, 5);
//return 0;
int n;
cin >> n;
vector<int> input1, input2, input3;
for (int i = 0; i < n; i++) {
int a, b, c;
cin >> a >> b >> c;
input1.push_back(a);
input2.push_back(b);
input3.push_back(c);
}
for (int i = 0; i < n; i++) {
SolveCase(input1[i], input2[i], input3[i]);
}
}

Test details

Test 1

Group: 1, 2, 3, 4, 5

Verdict: ACCEPTED

input
54
4 4 0
3 1 3
3 2 2
4 0 4
...

correct output
0
0
0
0
0
...

user output
0
0
0
0
0
...

Test 2

Group: 2, 3, 4, 5

Verdict: ACCEPTED

input
284
6 1 0
5 0 2
7 1 5
7 7 5
...

correct output
0
0
35280
0
36720
...

user output
0
0
35280
0
36720
...

Test 3

Group: 3, 4, 5

Verdict:

input
841
19 3 12
19 19 13
19 7 13
20 11 15
...

correct output
40291066
0
0
0
0
...

user output
758070953
0
0
0
0
...

Test 4

Group: 4, 5

Verdict:

input
1000
15 12 6
7 1 6
44 4 26
6 6 5
...

correct output
0
5040
494558320
0
340694548
...

user output
(empty)

Test 5

Group: 5

Verdict:

input
1000
892 638 599
966 429 655
1353 576 1140
1403 381 910
...

correct output
0
0
0
249098285
0
...

user output
(empty)

Test 6

Group: 5

Verdict:

input
1000
2000 1107 508
2000 1372 249
2000 588 65
2000 1739 78
...

correct output
750840601
678722180
744501884
159164549
868115056
...

user output
(empty)