Task: | Säähavainnot |
Sender: | Roopekt |
Submission time: | 2023-11-12 18:38:40 +0200 |
Language: | Python3 (CPython3) |
Status: | READY |
Result: | 28 |
group | verdict | score |
---|---|---|
#1 | ACCEPTED | 27.88 |
test | verdict | time | score | |
---|---|---|---|---|
#1 | ACCEPTED | 0.04 s | 3.63 | details |
#2 | ACCEPTED | 0.04 s | 3.5 | details |
#3 | ACCEPTED | 0.04 s | 3.63 | details |
#4 | ACCEPTED | 0.04 s | 3.25 | details |
#5 | ACCEPTED | 0.04 s | 3.75 | details |
#6 | ACCEPTED | 0.04 s | 3.25 | details |
#7 | ACCEPTED | 0.04 s | 3.13 | details |
#8 | ACCEPTED | 0.04 s | 3.75 | details |
Code
import random def get_forecast(previous_temperatures): forecast = previous_temperatures[:12] total_change = previous_temperatures[-1] - previous_temperatures[0] forecast = (t + total_change for t in forecast) fluctuation = max(previous_temperatures) - min(previous_temperatures) cutoff = 0.45 * fluctuation forecast = [(forecast if i < cutoff else None) for i, forecast in enumerate(forecast)] return forecast def load_test_data(): parsed_data = [] with open("test-data.txt", "r", encoding="utf-8") as file: for line in file: temperatures = [float(s) for s in line.strip().split(" ")] forecast_input = temperatures[:24] correct_forecast = temperatures[24:] parsed_data.append((forecast_input, correct_forecast)) random.shuffle(parsed_data) return parsed_data def solve_task(): day_count = int(input("")) data = ([float(s) for s in input("").split(" ")] for _ in range(day_count)) for day in data: forecast = get_forecast(day) print(" ".join(("?" if h is None else str(h)) for h in forecast)) def get_point_forecast_quality(correct_temperature, forecast_temperature): if forecast_temperature is None: return 1 deviation = abs(correct_temperature - forecast_temperature) if deviation > 2.05: return 0 elif deviation > 0.75: return 1 else: return 2 def get_point_forecast_score(correct_temperature, forecast_temperature): possible_scores = [-1, 0, 1] return possible_scores[get_point_forecast_quality(correct_temperature, forecast_temperature)] def get_random_color(): return (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)) def plot(): import matplotlib.pyplot as plt import numpy as np color_codes = ["#F00", "#FF0", "#0F0"] fig = plt.figure() x = np.arange(36) test_data = load_test_data() for day in test_data[:20]: line_color = get_random_color() forecast = get_forecast(day[0]) full_day = day[0] + day[1] plt.plot(x, full_day, color=line_color) points = [p for p in zip(x[24:], forecast, day[1]) if p[1] is not None] filtered_t = [t for t, forecast, correct in points] filtered_forecast = [forecast for t, forecast, correct in points] filtered_correct = [correct for t, forecast, correct in points] colors = [color_codes[get_point_forecast_quality(correct, forecast)] for t, forecast, correct in points] plt.scatter(filtered_t, filtered_forecast, c = colors) plt.plot(filtered_t, filtered_forecast, color=line_color) plt.show() def test_perfomance(): test_data = load_test_data() correct_forecasts = 0 incorrect_forecasts = 0 skipped_forecasts = 0 for day in test_data: forecast = get_forecast(day[0]) for f, c in zip(forecast, day[1]): score = get_point_forecast_score(c, f) if f is None: skipped_forecasts += 1 elif score == 1: correct_forecasts += 1 elif score == -1: incorrect_forecasts += 1 final_score = 25 * (correct_forecasts - incorrect_forecasts) / len(test_data) print(f"{final_score = }") print(f"{correct_forecasts = }") print(f"{incorrect_forecasts = }") print(f"{skipped_forecasts = }") print("") solve_task()
Test details
Test 1
Verdict: ACCEPTED
input |
---|
1000 -0.4 -0.1 -0.2 -0.3 -0.4 -0.5 ... |
correct output |
---|
0.4 0.4 0.5 0.8 0.9 1.1 1.3 1.... |
user output |
---|
0.20000000000000007 ? ? ? ? ? ... Truncated |
Test 2
Verdict: ACCEPTED
input |
---|
1000 2.9 2.9 2.9 2.1 2.6 2 2 2.2 2.... |
correct output |
---|
2.3 1.6 1.5 1.1 1 0.7 0.6 0.8 ... |
user output |
---|
2.6 ? ? ? ? ? ? ? ? ? ? ? -0.7 ? ? ? ? ? ? ? ? ? ? ? 14.1 14.799999999999999 14.799... Truncated |
Test 3
Verdict: ACCEPTED
input |
---|
1000 6.6 6 6.4 6 4.6 4.6 4.2 4.3 4.... |
correct output |
---|
10 10.9 10.3 10.1 9.1 7.3 5.7 ... |
user output |
---|
10.1 9.5 9.9 9.5 ? ? ? ? ? ? ?... Truncated |
Test 4
Verdict: ACCEPTED
input |
---|
1000 19.4 20.2 19.1 18.9 18.3 17.3 ... |
correct output |
---|
18 18.2 17 17.5 17.2 16.2 12 8... |
user output |
---|
17.2 18.0 16.900000000000002 1... Truncated |
Test 5
Verdict: ACCEPTED
input |
---|
1000 -5.7 -5.8 -5.8 -5.9 -7.1 -6.9 ... |
correct output |
---|
-4.2 -4.1 -4 -3.8 -3.5 -3.2 -3... |
user output |
---|
-4.5 -4.6 ? ? ? ? ? ? ? ? ? ? -1.2 ? ? ? ? ? ? ? ? ? ? ? 20.3 20.1 20.3 20.1 18.0000000... Truncated |
Test 6
Verdict: ACCEPTED
input |
---|
1000 14.8 14.8 15.4 12.9 11.8 9.7 9... |
correct output |
---|
11.8 11 11.6 10.8 10.4 10.4 10... |
user output |
---|
12.6 12.6 13.2 10.7 ? ? ? ? ? ... Truncated |
Test 7
Verdict: ACCEPTED
input |
---|
1000 0.7 1 2 1.4 0.6 -0.4 -0.9 -0.7... |
correct output |
---|
-1.3 -0.5 -0.6 -1 -3.2 -7.2 -6... |
user output |
---|
-1.8 -1.5 -0.5 ? ? ? ? ? ? ? ?... Truncated |
Test 8
Verdict: ACCEPTED
input |
---|
1000 15.1 15.3 14.9 14.4 14.4 13.7 ... |
correct output |
---|
15.6 15.9 16 15.2 14.6 14.4 13... |
user output |
---|
15.0 15.200000000000001 14.8 ?... Truncated |