CSES - Datatähti 2024 alku - Results
Submission details
Task:Säähavainnot
Sender:qanpi
Submission time:2023-11-12 16:38:36 +0200
Language:Python3 (CPython3)
Status:READY
Result:65
Feedback
groupverdictscore
#1ACCEPTED64.88
Test results
testverdicttimescore
#1ACCEPTED0.13 s8.5details
#2ACCEPTED0.13 s9.13details
#3ACCEPTED0.13 s8.13details
#4ACCEPTED0.13 s8details
#5ACCEPTED0.13 s8.25details
#6ACCEPTED0.13 s7.63details
#7ACCEPTED0.13 s7.38details
#8ACCEPTED0.14 s7.88details

Code

layers={"0": {"config": {"units": 24, "activation": "relu"}, "weights": [[0.09896011650562286, 0.09376654773950577, -0.1597302109003067, -0.1274624615907669, 0.09549461305141449, 0.014555972069501877, -0.03380075842142105, 0.10754040628671646, 0.010837352834641933, -0.2148699313402176, 0.029932256788015366, 0.071738600730896, 0.0031336310785263777, 0.21860811114311218, -0.08750627189874649, -0.1542293131351471, 0.025227084755897522, -0.053123705089092255, 0.2817576825618744, -0.028214674443006516, -0.03112265095114708, 0.12298625707626343, -0.017289377748966217, -1.0897791385650635], [0.08640316128730774, 0.18204106390476227, -0.2629561424255371, -0.3168126046657562, 0.24058480560779572, -0.1430635303258896, 0.07269880175590515, -0.10915827006101608, 0.2607075572013855, 0.08281062543392181, -0.10608012229204178, -0.1606716513633728, 0.108619324862957, -0.025755565613508224, 0.05708813667297363, -0.1408081352710724, -0.015226813964545727, 0.34690895676612854, 0.08680930733680725, -0.0008167137275449932, 0.17031046748161316, 0.06285706907510757, 0.008465454913675785, -0.9652130603790283], [0.17231084406375885, 0.2026800662279129, -0.21129277348518372, -0.020611628890037537, -0.19375331699848175, 0.1785387396812439, 0.14443914592266083, -0.18691740930080414, -0.04557071626186371, 0.032879579812288284, 0.015519791282713413, -0.09838537126779556, 0.09424358606338501, 0.545756459236145, -0.0686473622918129, 0.2133779674768448, -0.1959906369447708, -0.3071258068084717, -0.44019198417663574, -0.22635233402252197, -0.003754896344617009, 0.10900508612394333, 0.2802164554595947, -0.06737913936376572], [0.040290988981723785, 0.017240792512893677, -0.08801136910915375, -0.16829024255275726, 0.08049920201301575, -0.2705833613872528, 0.3296434283256531, 0.03215569630265236, 0.3967849910259247, -0.11991288512945175, -0.02885618805885315, -0.3940808176994324, 0.14537382125854492, -0.12413036078214645, 0.10745366662740707, 0.15981338918209076, 0.055122386664152145, 0.27871790528297424, 0.2096312791109085, -0.08876915276050568, -0.08563817292451859, 0.051917556673288345, 0.2517924904823303, -0.8992971777915955], [0.05059671774506569, -0.2500513195991516, -0.07341043651103973, -0.09350180625915527, -0.32464131712913513, -0.26799899339675903, -0.08965633809566498, -0.2355514019727707, 0.28024423122406006, 0.36410775780677795, 0.16938114166259766, -0.43401584029197693, -0.030046047642827034, -0.520766019821167, -0.2558343708515167, -0.05280100554227829, 0.25850698351860046, 0.09050743281841278, -0.005882222205400467, 0.06793491542339325, 0.29011228680610657, -0.07971309870481491, 0.19533836841583252, 0.4601554274559021], [0.2738024890422821, -0.1356121450662613, 0.1519547551870346, 0.12154791504144669, -0.3078576624393463, -0.04773825779557228, -0.051775574684143066, 0.10518761724233627, 0.09858223795890808, -0.15235984325408936, 0.21570509672164917, -0.05376476049423218, 0.18684816360473633, -0.1344958245754242, 0.03370324894785881, 0.2184007316827774, -0.16296347975730896, -0.14400939643383026, -0.2925548255443573, 0.0271653700619936, 0.21169014275074005, -0.2297801971435547, -0.1066257655620575, -0.6956157088279724], [-0.29552778601646423, 0.025807693600654602, -0.30287623405456543, 0.1096896305680275, -0.006356597412377596, -0.2605724334716797, 0.09783479571342468, -0.24701350927352905, 0.22100646793842316, 0.20037080347537994, -0.12173520028591156, 0.3347928822040558, 0.2706746757030487, 0.34391939640045166, -0.14713717997074127, 0.08165055513381958, 0.29367387294769287, 0.1043846607208252, -0.0462539866566658, 0.2152814418077469, -0.1487441062927246, -0.17779210209846497, -0.12349255383014679, 0.11326481401920319], [-0.01785409264266491, -0.09064584970474243, -0.02420720085501671, 0.28571996092796326, 0.39582231640815735, -0.10722438991069794, -0.10823629051446915, -0.21412265300750732, 0.13803322613239288, 0.01563936099410057, -0.27604979276657104, -0.05877682566642761, 0.06793035566806793, -0.2522033751010895, -0.2034357786178589, -0.1643223762512207, 0.13536886870861053, -0.09737852960824966, -0.3314625322818756, -0.13918361067771912, 0.15281808376312256, 0.24453137814998627, -0.16532795131206512, -0.9354807734489441], [-0.0940830186009407, -0.015644505620002747, -0.1447492241859436, -0.19245684146881104, 0.08467767387628555, 0.3659254014492035, 0.22938582301139832, 0.16473224759101868, 0.06014201045036316, 0.249254509806633, 0.05136783421039581, -0.1949818879365921, 0.13813848793506622, 0.0023964829742908478, -0.23128841817378998, 0.09902393072843552, 0.3426646888256073, -0.07754431664943695, -0.15709641575813293, -0.074341781437397, 0.15578432381153107, 0.031748320907354355, 0.002403794089332223, 0.15883471071720123], [-0.08451380580663681, -0.14165374636650085, 0.16286201775074005, 0.15487343072891235, -0.2637149691581726, 0.28454670310020447, -0.12051917612552643, -0.06840422004461288, 0.24338454008102417, -0.16485480964183807, 0.032164011150598526, -0.02906963974237442, 0.05801454931497574, 0.11372550576925278, -0.076590895652771, -0.21131357550621033, 0.14251884818077087, -0.0009180603665299714, -0.25382739305496216, -0.04326682165265083, -0.06144178286194801, 0.08440553396940231, 0.21276241540908813, 0.6804699301719666], [-0.24422264099121094, 0.13284705579280853, -0.07349971681833267, 0.2232392281293869, 0.22191990911960602, -0.1650066375732422, 0.30042675137519836, -0.07281556725502014, -0.24667757749557495, -0.09446384012699127, 0.09127162396907806, 0.18291577696800232, -0.3653881847858429, -0.21460416913032532, 0.28318947553634644, 0.29159465432167053, -0.03692171722650528, -0.005728957708925009, 0.372989296913147, 0.2483057826757431, -0.33777961134910583, 0.12332472950220108, -0.12402097135782242, 0.19884926080703735], [-0.09898146241903305, -0.07107344269752502, -0.12007635086774826, -0.04778885096311569, -0.10703767091035843, 0.24041123688220978, 0.26585808396339417, 0.330453097820282, -0.07853837311267853, 0.34811854362487793, -0.13371363282203674, -0.10889509320259094, 0.07891903817653656, -0.3675266206264496, 0.08963815122842789, 0.11291079968214035, -0.06320783495903015, 0.052277956157922745, -0.11060080677270889, 0.2003382295370102, -0.046421993523836136, -0.20024138689041138, 0.004680914804339409, 0.21719349920749664], [0.1770930141210556, -0.1628846973180771, -0.1902976632118225, 0.10361623018980026, 0.09510897099971771, -0.02892637625336647, -0.09083335846662521, 0.18375854194164276, 0.24616871774196625, 0.19648942351341248, -0.14527487754821777, -0.1876915842294693, 0.010724137537181377, 0.1539146602153778, -0.11390253156423569, 0.045162640511989594, -0.013278776779770851, -0.09543552249670029, 0.1141214594244957, -0.23513948917388916, 0.17683415114879608, 0.11478504538536072, -0.2078871726989746, 0.7756937146186829], [-0.006788491737097502, 0.2892642021179199, 0.37248679995536804, 0.05389998480677605, -0.39971715211868286, 0.022055111825466156, -0.26999518275260925, 0.2362939417362213, 0.30937281250953674, -0.10148588567972183, 0.04737222194671631, 0.012984134256839752, -0.20278321206569672, -0.013137905858457088, 0.3472703993320465, -0.16594088077545166, -0.12007150799036026, 0.02705254778265953, -0.17010098695755005, -0.40965500473976135, -0.031505241990089417, -0.3898327052593231, -0.14060159027576447, -0.2939882278442383], [-0.028240256011486053, -0.09835226833820343, -0.013354567810893059, -0.01944456435739994, 0.2144625037908554, 0.17329514026641846, -0.15443536639213562, 0.08840421587228775, 0.2387312352657318, 0.13940642774105072, -0.13292258977890015, 0.005615186411887407, 0.08323498070240021, 0.1101333498954773, -0.19358401000499725, 0.07535077631473541, 0.1444440633058548, -0.06291629374027252, -0.2700193524360657, 0.12609855830669403, -0.041689321398735046, 0.0531686469912529, 0.24005603790283203, -0.34880441427230835], [-0.007856165058910847, 0.025123439729213715, 0.07741200178861618, 0.06978318095207214, 0.28126639127731323, -0.15017934143543243, -0.08862636238336563, -0.18345358967781067, -0.12038099020719528, -0.09658490121364594, 0.21507635712623596, 0.17035123705863953, -0.1911340206861496, -0.10315727442502975, -0.22751057147979736, 0.2264692634344101, -0.11928705126047134, -0.14912521839141846, -0.11077896505594254, 0.09523966908454895, -0.08930657804012299, -0.09894493967294693, 0.30988776683807373, 0.7806711792945862], [-0.013922602869570255, -0.4120945930480957, 0.27653127908706665, -0.03964662924408913, 0.36168283224105835, -0.1939065158367157, 0.025341587141156197, -0.1752718836069107, 0.1732221245765686, 0.1142464280128479, 0.016144223511219025, -0.05320318415760994, -0.13773444294929504, -0.25862404704093933, -0.21237729489803314, 0.1017938107252121, 0.09036561846733093, 0.10842456668615341, -0.07286813110113144, 0.06145811080932617, -0.04214220866560936, 0.16279490292072296, 0.29756149649620056, -0.5528183579444885], [-0.1711675524711609, 0.06478367745876312, 0.21586735546588898, 0.22406142950057983, -0.07719333469867706, -0.0009893554961308837, -0.42941683530807495, -0.3213951587677002, -0.18680930137634277, 0.25295448303222656, 0.25925374031066895, 0.0879264697432518, 0.15834617614746094, 0.5040602684020996, 0.04150744155049324, 0.13340139389038086, 0.37785661220550537, -0.3354080617427826, -0.2670319974422455, 0.146857351064682, -0.3810819387435913, -0.18081559240818024, 0.0374031625688076, -0.23708094656467438], [-0.09113059192895889, -0.0022591983433812857, 0.04361800476908684, -0.06725852191448212, -0.053667303174734116, -0.02351534180343151, 0.0657716616988182, 0.24493078887462616, -0.0657767578959465, -0.11120378971099854, -0.23741941154003143, 0.0883486196398735, -0.0016493775183334947, 0.12744775414466858, 0.20247745513916016, 0.07346540689468384, -0.052984438836574554, 0.28466013073921204, 0.27837643027305603, 0.10812446475028992, -0.19481515884399414, -0.06705483049154282, 0.20169638097286224, 0.70464688539505], [-0.1349509209394455, 0.02317156083881855, -0.19358953833580017, -0.15381799638271332, 0.7088828086853027, 0.17370112240314484, 0.04422738403081894, -0.07216836512088776, -0.09686852246522903, -0.1508815437555313, -0.3667144477367401, 0.14040614664554596, 0.33058080077171326, -0.01198158785700798, -0.005612442269921303, -0.3692968189716339, -0.2011241465806961, 0.20437562465667725, -0.29000696539878845, -0.03238958492875099, 0.2149394303560257, -0.1538960337638855, -0.047539617866277695, 0.1807946115732193], [-0.13489125669002533, -0.06379718333482742, -0.22807557880878448, -0.10049127787351608, -0.1839880496263504, 0.051504507660865784, -0.03447318449616432, -0.285785049200058, -0.09130332618951797, 0.47927576303482056, 0.3347522020339966, -0.1770964115858078, -0.23059456050395966, 0.1037355586886406, -0.27645981311798096, 0.014967316761612892, 0.28553998470306396, 0.4220429062843323, 0.03574904054403305, 0.05270741507411003, 0.3218590021133423, 0.21964289247989655, -0.25556254386901855, -0.5690942406654358], [0.3040504455566406, 0.06108889356255531, -0.3807973265647888, 0.19422149658203125, 0.4808725416660309, -0.10993155837059021, 0.23697291314601898, -0.0765785425901413, -0.2372444123029709, 0.19822905957698822, 0.024679996073246002, -0.29449212551116943, -0.3228715658187866, -0.03105272725224495, -0.054124996066093445, -0.37538567185401917, -0.12622466683387756, 0.05358484014868736, 0.26707589626312256, 0.21670947968959808, 0.05147768184542656, -0.14365167915821075, -0.2881857454776764, 0.25707852840423584], [-0.15052224695682526, -0.08657229691743851, -0.1456553339958191, -0.09149245172739029, 0.08348125964403152, 0.03718751296401024, 0.3116932809352875, 0.3902401626110077, -0.3014082610607147, 0.10670772939920425, 0.3431692123413086, 0.016347648575901985, 0.1197822168469429, -0.02770758606493473, -0.1524740308523178, 0.2246403843164444, -0.23406483232975006, 0.2614632844924927, -0.08644211292266846, 0.08880653977394104, -0.4373723864555359, -0.2612406313419342, -0.4983607232570648, -0.0423477366566658], [0.011328908614814281, 0.1274050772190094, 0.18877148628234863, -0.38614577054977417, 0.07194565236568451, -0.2956230044364929, 0.07887469232082367, -0.06728198379278183, 0.06440599262714386, -0.12108803540468216, -0.06265903264284134, 0.05598106607794762, 0.17763371765613556, 0.2200661599636078, 0.34384885430336, 0.2513146996498108, 0.05586099252104759, 0.12290290743112564, 0.2882443070411682, 0.044082269072532654, 0.14716628193855286, -0.038827117532491684, -0.08387506008148193, 0.24337060749530792]], "biases": [0.012189888395369053, -0.11860305070877075, 0.05534588173031807, 0.8382702469825745, 0.5176594257354736, -0.03731047734618187, 0.7574836015701294, 0.13526755571365356, -0.18967042863368988, -0.23080182075500488, -0.2677627503871918, -0.30960044264793396, -0.15695421397686005, -0.18386100232601166, 0.10223626345396042, 0.38449594378471375, -0.20641590654850006, 0.28634217381477356, -0.14730484783649445, -0.2976861000061035, -0.5252541899681091, -0.587885856628418, -1.3125929832458496, 0.5381584167480469]}, "1": {"config": {"units": 12, "activation": "linear"}, "weights": [[-0.32881662249565125, -0.22493380308151245, 0.012226307764649391, -0.13375581800937653, 0.03241230547428131, -0.1227605789899826, 0.00173871498554945, -0.2859260141849518, 0.10516481846570969, 0.20818433165550232, -0.10189536213874817, 0.0012776494259014726, 0.18348726630210876, 0.06400890648365021, -0.12860636413097382, 0.3983989953994751, -0.005303948186337948, -0.09604913741350174, 0.3091948628425598, 0.04655781015753746, -0.07304435968399048, 0.03281010314822197, -0.09121955186128616, 0.043712031096220016], [-0.2942352294921875, -0.3163636028766632, -0.013936060480773449, -0.18554677069187164, 0.04560288041830063, -0.17418122291564941, 0.017067549750208855, -0.2713157534599304, -0.029625551775097847, 0.21331831812858582, 0.0062871528789401054, 0.06312762200832367, 0.2797491252422333, 0.08942939341068268, -0.01591038517653942, 0.3670830726623535, -0.014418804086744785, -0.11982560157775879, 0.2516343593597412, 0.055587634444236755, -0.05978021398186684, 0.02054552175104618, -0.0720018520951271, 0.04223886504769325], [-0.3048318922519684, -0.397924542427063, -0.07356273382902145, -0.2085704356431961, 0.049006082117557526, -0.09423686563968658, 0.029049070551991463, -0.2523845434188843, -0.03553216531872749, 0.21645107865333557, 0.07985717803239822, 0.09401487559080124, 0.2682627737522125, 0.03875477612018585, -0.007563124876469374, 0.33482131361961365, -0.04946564510464668, -0.13977083563804626, 0.2263018786907196, 0.093612901866436, -0.07819722592830658, 0.026200367137789726, -0.03589698672294617, 0.03781217709183693], [-0.18829143047332764, -0.46155932545661926, -0.1403171420097351, -0.26317358016967773, 0.07684740424156189, -0.11263234913349152, 0.026370711624622345, -0.24921175837516785, -0.07227838784456253, 0.2896069884300232, 0.21879439055919647, 0.177334725856781, 0.25292712450027466, -0.025602782145142555, 0.008240524679422379, 0.23973555862903595, -0.10778094083070755, -0.17819267511367798, 0.12158413231372833, 0.11855967342853546, -0.11682140827178955, 0.06789305061101913, 0.029804691672325134, 0.09229245036840439], [-0.20613373816013336, -0.21676701307296753, -0.18021957576274872, -0.4106338620185852, 0.09595777094364166, -0.1867196410894394, 0.03474915027618408, -0.2754082977771759, 0.28514546155929565, -0.10330357402563095, 0.07194067537784576, -0.09720674157142639, 0.18300053477287292, -0.04088814929127693, -0.08036118000745773, 0.26981690526008606, -0.1308506578207016, -0.16452066600322723, 0.4517105221748352, 0.1592087596654892, -0.19101384282112122, 0.0515289343893528, 0.12284734100103378, -0.12149739265441895], [-0.1934194713830948, -0.2238173484802246, -0.22062087059020996, -0.4723166227340698, 0.1354427933692932, -0.10314715653657913, 0.015279494225978851, -0.24026240408420563, 0.26245105266571045, 0.12712496519088745, 0.14430800080299377, 0.10054811090230942, -0.005379087757319212, -0.18401870131492615, -0.07259460538625717, 0.08392676711082458, -0.1921732872724533, -0.15158623456954956, 0.3787252902984619, 0.07230496406555176, -0.3113826513290405, 0.09863892942667007, 0.216782346367836, -0.024104058742523193], [-0.3313561975955963, 0.046365294605493546, -0.20388764142990112, -0.6282168030738831, 0.15797917544841766, -0.1450018733739853, 0.014259335584938526, -0.2379036247730255, 0.35338833928108215, -0.08571703732013702, 0.053292110562324524, 0.09465546905994415, -0.03530183434486389, -0.16459569334983826, -0.0853615552186966, 0.06680385768413544, -0.12953290343284607, -0.18134154379367828, 0.5258287191390991, -0.0007397576118819416, -0.4420277774333954, 0.0475238636136055, 0.3037150204181671, -0.07685499638319016], [-0.3396293818950653, -0.037292782217264175, -0.233052596449852, -0.6943742036819458, 0.15001383423805237, -0.06317344307899475, 0.025779644027352333, -0.14525701105594635, 0.2319023311138153, 0.11522270739078522, 0.1320953071117401, 0.17403589189052582, 0.03328799083828926, -0.2651638388633728, -0.05819486454129219, -0.031585827469825745, -0.23817501962184906, -0.28629323840141296, 0.2114315927028656, -0.12769615650177002, -0.4357988238334656, 0.003904296550899744, 0.3706887364387512, 0.14682216942310333], [-0.2939211130142212, -0.06787119805812836, -0.1802317202091217, -0.7791978120803833, 0.1249605193734169, -0.04071396216750145, 0.10543124377727509, -0.0678529441356659, 0.04458083584904671, -0.05195040628314018, 0.023578260093927383, 0.2536972165107727, 0.04378194361925125, -0.39560166001319885, 0.22138242423534393, 0.09154906868934631, -0.2826557457447052, -0.36623257398605347, 0.24813467264175415, -0.2186328023672104, -0.4372027516365051, -0.058001141995191574, 0.43160921335220337, 0.1959865689277649], [0.014180964790284634, -0.35353532433509827, -0.17829948663711548, -0.7596384882926941, 0.1643456518650055, 0.03758843243122101, 0.16954490542411804, -0.19228331744670868, 0.17438195645809174, -0.18113698065280914, 0.12877368927001953, 0.07855746895074844, 0.11824826151132584, -0.3787238299846649, 0.14650146663188934, 0.17766378819942474, -0.13779141008853912, -0.45881059765815735, 0.08786977082490921, -0.1754901111125946, -0.48821520805358887, -0.1415681391954422, 0.44146305322647095, 0.23428285121917725], [0.04229072108864784, -0.2101992517709732, -0.18775127828121185, -0.8041914701461792, 0.1709774285554886, -0.2995089888572693, 0.18315798044204712, -0.2310151755809784, 0.26500049233436584, -0.05985921621322632, 0.270403116941452, -0.11880511045455933, 0.228116974234581, -0.15714320540428162, -0.01247961912304163, 0.060583751648664474, -0.022461771965026855, -0.47285014390945435, -0.09540504217147827, -0.20560690760612488, -0.5230897665023804, -0.16039341688156128, 0.47399502992630005, 0.28459903597831726], [0.14113852381706238, -0.4364088475704193, -0.2270193248987198, -0.7922267317771912, 0.14413519203662872, -0.03707873076200485, 0.1620435118675232, -0.30944281816482544, 0.07616988569498062, 0.0938137024641037, 0.19666633009910583, 0.1277599185705185, 0.012820618227124214, -0.24554529786109924, 0.16076889634132385, 0.08199520409107208, 0.1253945231437683, -0.5036303400993347, -0.11416144669055939, -0.22585758566856384, -0.44200071692466736, -0.1450575888156891, 0.43557316064834595, 0.4318939447402954]], "biases": [0.05183810740709305, 0.05011412501335144, 0.02820204198360443, 0.05116455629467964, 0.1391075849533081, 0.20291836559772491, 0.33891230821609497, 0.2984583377838135, 0.15499962866306305, 0.06693563610315323, 0.14059269428253174, 0.011888869106769562]}}

# def normalize(arr, mx, mn):
#     for i in range(len(arr)): 
#         for j in range(len(arr[i])):
#             arr[i][j] = arr[i][j]*100 / (mx - mn)
    
#     return arr

def relu(x):
    return max(0.0, x)

def custom_predict(input):
    for key, layer in layers.items(): 
        # print(layer)
        config = layer["config"]
        weights = layer["weights"]
        biases = layer["biases"]

        # print(config)
        neurons = config["units"]
        output = [0]*neurons

        for n in range(neurons):
            activation = 0

            assert len(input) == len(weights[n])

            for (i, w) in zip(input, weights[n]): 
                activation += i * w
            activation += biases[n]
            
            # print(activation)
            if(config["activation"] == 'relu'):
                output[n] = relu(activation)
            else: 
                output[n] = activation
        
        input = output 

    return input

# import sys 
# import numpy as np
# file = open("data.txt", "r")
# sys.stdin = file
# total_correct = 0
# total_incorrect = 0

data = []
days = int(input())

training_sums = []
correct_sums = []
incorrect_sums = []

for i in range(days):
    temps = [float(x) for x in input().split()]
    data.append(temps)

TRAINING_MEAN = 4.9959406249999985

for d in data: 
    mean = sum(d[:24]) / 24

    if abs(TRAINING_MEAN - mean) < 18: 
        ans = custom_predict(d[:24])
        print(" ".join([format(x, ".1f") for x in ans]))

        # truth = d[24:]
        # diff = np.abs(np.array(ans) - np.array(truth)) 
    
        # correct = np.count_nonzero(diff < 0.75)
        # incorrect = np.count_nonzero(diff >= 2.05)
    else:
        print("? " * 12)
        # incorrect = 0
        # correct = 0


    # training_sums.append(sum(d[:24]) / 24)
    # if (incorrect > 4):
    #     incorrect_sums.append(sum(d[:24]) / 24)
    # else:
    #     correct_sums.append(sum(d[:24]) / 24)
 
    # total_correct += correct
    # total_incorrect += incorrect


# score = 25 * (total_correct - total_incorrect) / days

# print(sum(training_sums) / len(training_sums))
# print(sum(incorrect_sums) / len(incorrect_sums))
# print(sum(correct_sums) / len(correct_sums))
# print(total_correct, total_incorrect, score)

# file.close()

Test details

Test 1

Verdict: ACCEPTED

input
1000
-0.4 -0.1 -0.2 -0.3 -0.4 -0.5 ...

correct output
0.4 0.4 0.5 0.8 0.9 1.1 1.3 1....

user output
0.2 0.2 0.1 0.1 0.1 0.0 0.1 -0...
Truncated

Test 2

Verdict: ACCEPTED

input
1000
2.9 2.9 2.9 2.1 2.6 2 2 2.2 2....

correct output
2.3 1.6 1.5 1.1 1 0.7 0.6 0.8 ...

user output
2.7 2.6 2.5 2.3 2.3 2.1 2.1 2....
Truncated

Test 3

Verdict: ACCEPTED

input
1000
6.6 6 6.4 6 4.6 4.6 4.2 4.3 4....

correct output
10 10.9 10.3 10.1 9.1 7.3 5.7 ...

user output
10.1 10.0 9.6 9.1 8.3 7.5 6.7 ...
Truncated

Test 4

Verdict: ACCEPTED

input
1000
19.4 20.2 19.1 18.9 18.3 17.3 ...

correct output
18 18.2 17 17.5 17.2 16.2 12 8...

user output
17.5 17.5 17.2 17.0 16.3 15.7 ...
Truncated

Test 5

Verdict: ACCEPTED

input
1000
-5.7 -5.8 -5.8 -5.9 -7.1 -6.9 ...

correct output
-4.2 -4.1 -4 -3.8 -3.5 -3.2 -3...

user output
-4.1 -3.9 -3.8 -3.8 -4.2 -4.1 ...
Truncated

Test 6

Verdict: ACCEPTED

input
1000
14.8 14.8 15.4 12.9 11.8 9.7 9...

correct output
11.8 11 11.6 10.8 10.4 10.4 10...

user output
13.0 12.8 12.5 12.1 11.3 10.5 ...
Truncated

Test 7

Verdict: ACCEPTED

input
1000
0.7 1 2 1.4 0.6 -0.4 -0.9 -0.7...

correct output
-1.3 -0.5 -0.6 -1 -3.2 -7.2 -6...

user output
-1.6 -1.7 -1.7 -2.1 -2.5 -2.7 ...
Truncated

Test 8

Verdict: ACCEPTED

input
1000
15.1 15.3 14.9 14.4 14.4 13.7 ...

correct output
15.6 15.9 16 15.2 14.6 14.4 13...

user output
15.1 15.1 14.8 14.5 13.9 13.4 ...
Truncated