CSES - Datatähti 2024 alku - Results
Submission details
Task:Säähavainnot
Sender:EeliH
Submission time:2023-11-04 19:52:04 +0200
Language:Python3 (PyPy3)
Status:READY
Result:61
Feedback
groupverdictscore
#1ACCEPTED61.38
Test results
testverdicttimescore
#1ACCEPTED0.12 s8details
#2ACCEPTED0.12 s8.25details
#3ACCEPTED0.12 s8.13details
#4ACCEPTED0.12 s7.75details
#5ACCEPTED0.12 s7.5details
#6ACCEPTED0.12 s7.25details
#7ACCEPTED0.12 s6.88details
#8ACCEPTED0.12 s7.63details

Code

w = [
[-0.01, -0.08, 0.16, -0.03, -0.05, -0.04, 0.09, 0.02, 0.03, -0.11, 0.06, -0.03, 0.01, -0.07, 0.10, -0.08, 0.05, 0.01, 0.00, -0.02, -0.11, -0.12, 0.31, 0.91],
[-0.00, 0.11, -0.11, 0.05, -0.01, 0.07, -0.07, 0.01, 0.01, -0.01, -0.06, 0.11, -0.12, 0.07, -0.10, 0.02, 0.04, -0.00, 0.08, -0.06, -0.16, -0.03, 0.41, 0.72],
[-0.17, 0.08, 0.00, 0.08, 0.13, 0.07, -0.19, 0.07, -0.03, 0.04, -0.04, 0.03, -0.07, -0.06, 0.08, -0.07, 0.09, 0.02, -0.02, 0.05, -0.14, -0.10, 0.20, 0.92],
[-0.09, -0.03, 0.05, 0.09, 0.13, -0.05, 0.02, -0.11, 0.14, -0.11, -0.11, -0.01, 0.02, 0.08, 0.04, -0.07, 0.02, 0.05, 0.01, 0.03, 0.01, 0.06, 0.11, 0.70],
[-0.02, -0.05, -0.05, 0.10, -0.00, -0.03, 0.07, 0.05, -0.05, -0.06, -0.00, 0.10, 0.02, 0.03, -0.16, -0.03, 0.06, 0.04, 0.08, 0.08, 0.07, 0.08, 0.25, 0.41],
[-0.10, 0.03, -0.05, 0.01, 0.12, 0.06, -0.13, 0.09, -0.04, 0.03, 0.07, 0.10, -0.03, -0.23, -0.02, 0.04, 0.17, -0.04, 0.10, 0.23, 0.01, -0.00, 0.13, 0.40],
[-0.07, 0.04, -0.12, -0.03, 0.07, 0.17, -0.02, 0.08, -0.01, -0.00, -0.08, -0.09, -0.01, 0.05, 0.00, 0.06, 0.14, 0.08, 0.07, 0.04, 0.05, -0.02, 0.19, 0.36],
[-0.09, -0.06, -0.10, 0.03, 0.10, 0.13, -0.04, 0.03, -0.03, -0.05, 0.09, -0.03, 0.11, -0.04, -0.03, 0.09, 0.21, 0.18, 0.10, -0.01, -0.11, 0.04, 0.08, 0.40],
None,
None,
None,
None
]
def predict(nums: [float]) -> [str]:
res = []
for v in w:
if v == None:
res.append("?")
else:
res.append("%.1f" % sum(v[i] * nums[i] for i in range(24)))
return res
if __name__ == "__main__":
n = int(input())
for i in range(n):
nums = [float(x) for x in input().split(" ")]
print(" ".join(predict(nums)))

Test details

Test 1

Verdict: ACCEPTED

input
1000
-0.4 -0.1 -0.2 -0.3 -0.4 -0.5 ...

correct output
0.4 0.4 0.5 0.8 0.9 1.1 1.3 1....

user output
0.3 0.3 0.2 0.1 0.0 -0.1 -0.1 ...
Truncated

Test 2

Verdict: ACCEPTED

input
1000
2.9 2.9 2.9 2.1 2.6 2 2 2.2 2....

correct output
2.3 1.6 1.5 1.1 1 0.7 0.6 0.8 ...

user output
2.6 2.5 2.5 2.5 2.3 2.1 2.1 2....
Truncated

Test 3

Verdict: ACCEPTED

input
1000
6.6 6 6.4 6 4.6 4.6 4.2 4.3 4....

correct output
10 10.9 10.3 10.1 9.1 7.3 5.7 ...

user output
10.4 9.7 9.7 9.1 8.3 7.0 6.6 5...
Truncated

Test 4

Verdict: ACCEPTED

input
1000
19.4 20.2 19.1 18.9 18.3 17.3 ...

correct output
18 18.2 17 17.5 17.2 16.2 12 8...

user output
17.4 17.4 17.2 16.8 16.4 15.3 ...
Truncated

Test 5

Verdict: ACCEPTED

input
1000
-5.7 -5.8 -5.8 -5.9 -7.1 -6.9 ...

correct output
-4.2 -4.1 -4 -3.8 -3.5 -3.2 -3...

user output
-4.3 -4.4 -4.5 -4.8 -4.9 -5.2 ...
Truncated

Test 6

Verdict: ACCEPTED

input
1000
14.8 14.8 15.4 12.9 11.8 9.7 9...

correct output
11.8 11 11.6 10.8 10.4 10.4 10...

user output
13.3 12.7 12.6 12.2 11.4 10.4 ...
Truncated

Test 7

Verdict: ACCEPTED

input
1000
0.7 1 2 1.4 0.6 -0.4 -0.9 -0.7...

correct output
-1.3 -0.5 -0.6 -1 -3.2 -7.2 -6...

user output
-1.6 -1.8 -1.4 -1.7 -2.2 -1.8 ...
Truncated

Test 8

Verdict: ACCEPTED

input
1000
15.1 15.3 14.9 14.4 14.4 13.7 ...

correct output
15.6 15.9 16 15.2 14.6 14.4 13...

user output
15.0 14.7 14.8 14.3 13.7 12.8 ...
Truncated