Task: | Laskettelukeskus |
Sender: | EmuBird |
Submission time: | 2023-10-31 17:06:42 +0200 |
Language: | Rust |
Status: | READY |
Result: | 100 |
group | verdict | score |
---|---|---|
#1 | ACCEPTED | 53 |
#2 | ACCEPTED | 47 |
test | verdict | time | group | |
---|---|---|---|---|
#1 | ACCEPTED | 0.00 s | 1, 2 | details |
#2 | ACCEPTED | 0.00 s | 1, 2 | details |
#3 | ACCEPTED | 0.00 s | 1, 2 | details |
#4 | ACCEPTED | 0.17 s | 2 | details |
#5 | ACCEPTED | 0.19 s | 2 | details |
#6 | ACCEPTED | 0.00 s | 1, 2 | details |
#7 | ACCEPTED | 0.16 s | 2 | details |
#8 | ACCEPTED | 0.00 s | 1, 2 | details |
#9 | ACCEPTED | 0.12 s | 2 | details |
#10 | ACCEPTED | 0.00 s | 1, 2 | details |
#11 | ACCEPTED | 0.14 s | 2 | details |
#12 | ACCEPTED | 0.00 s | 1, 2 | details |
#13 | ACCEPTED | 0.14 s | 2 | details |
Code
use std::cmp::max; use std::collections::{HashMap, HashSet}; use std::io; fn main() { let stdin = io::stdin(); let slope_count = { // AKA n let mut input: String = String::new(); stdin.read_line(&mut input).unwrap(); input.replace("\r", "").replace("\n", "").parse::<usize>().unwrap() }; // All slopes indexed by their IDs. let mut slopes = { let mut slopes: Vec<SkiSlope> = Vec::with_capacity(slope_count); for _ in 0..slope_count { slopes.push(SkiSlope { upward_connections: HashSet::new(), downward_connections: HashSet::new(), plows: 0, // Will be initialized later. child_plows: 0 // Will be initialized later. }); } slopes }; // Read routes { // Read line slope_count - 1 times for _ in 1..slope_count { let mut input: String = String::new(); stdin.read_line(&mut input).unwrap(); let route: Vec<usize> = input.replace("\r", "").replace("\n", "").split_whitespace().map(|value| { value.parse::<usize>().unwrap() - 1 // Indexes are given starting from 1, so they need to be decremented }).collect(); // A route exists from route[0] (upper) to route[1] (lower). slopes[route[1]].upward_connections.insert(route[0]); slopes[route[0]].downward_connections.insert(route[1]); } }; // Read number of required plows. { let mut input: String = String::new(); stdin.read_line(&mut input).unwrap(); input .replace("\r", "") .replace("\n", "") .split_whitespace() .enumerate() .for_each(|(i, value)| { slopes[i].plows = value.parse().unwrap(); }); } // List of ski slopes indexed by their depth from the root slope. Depth is 0 for the root slope. // Otherwise this could be calculated while taking input, but it's possible depth would be determined before the parent's depth is calculated. let depth_map: Vec<HashSet<usize>> = { let mut depth_map: Vec<HashSet<usize>> = Vec::new(); depth_map.insert(0, HashSet::from([ 0 ])); // Root slope is at depth 0. // Calculate required plows from bottom to top. // key-value pairs of slopes to be processed let mut loop_slopes: HashMap<usize, usize> = HashMap::with_capacity(1); loop_slopes.insert(0, 0); // Adds root slope manually. while !&loop_slopes.is_empty() { let mut next_slopes = HashMap::new(); for (parent_slope_id, depth) in &loop_slopes { let slope = &slopes[*parent_slope_id]; let new_depth = depth + 1; if depth_map.len() >= new_depth { depth_map.push(HashSet::new()); } let set = &mut depth_map[new_depth]; for lower_slope_id in slope.downward_connections.clone() { set.insert(lower_slope_id); next_slopes.insert(lower_slope_id, new_depth); } } loop_slopes = next_slopes; } depth_map }; // Calculate required plows in reverse depth order. for slope_ids in depth_map.iter().rev() { for slope_id in slope_ids { let slope = &mut slopes[*slope_id]; slope.plows = max(slope.plows, slope.child_plows); let plows = slope.plows; for upper_slope_id in slope.upward_connections.clone() { let mut upper_slope = &mut slopes[upper_slope_id]; upper_slope.child_plows += plows; } } } println!("{}", slopes[0].plows); // Print required plows for the root ski slope. } struct SkiSlope { upward_connections: HashSet<usize>, downward_connections: HashSet<usize>, plows: u64, // number of required plows, child_plows: u64 // required plows of all children combined }
Test details
Test 1
Group: 1, 2
Verdict: ACCEPTED
input |
---|
5 1 2 1 3 3 4 3 5 ... |
correct output |
---|
6 |
user output |
---|
6 |
Test 2
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 73 1 64 64 23 1 88 ... |
correct output |
---|
2675 |
user output |
---|
2675 |
Test 3
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 36 36 56 56 59 36 97 ... |
correct output |
---|
2808 |
user output |
---|
2808 |
Test 4
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 45452 1 74209 45452 78960 45452 79820 ... |
correct output |
---|
28399367694319 |
user output |
---|
28399367694319 |
Test 5
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 31165 1 23263 31165 89516 31165 53122 ... |
correct output |
---|
28546840313799 |
user output |
---|
28546840313799 |
Test 6
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 79 79 9 79 45 45 10 ... |
correct output |
---|
0 |
user output |
---|
0 |
Test 7
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 66038 1 56789 56789 7403 66038 69542 ... |
correct output |
---|
0 |
user output |
---|
0 |
Test 8
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 2 2 3 3 4 4 5 ... |
correct output |
---|
100 |
user output |
---|
100 |
Test 9
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 2 2 3 3 4 4 5 ... |
correct output |
---|
1000000000 |
user output |
---|
1000000000 |
Test 10
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 2 1 3 2 4 2 5 ... |
correct output |
---|
2809 |
user output |
---|
2809 |
Test 11
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 2 1 3 2 4 2 5 ... |
correct output |
---|
26053917212428 |
user output |
---|
26053917212428 |
Test 12
Group: 1, 2
Verdict: ACCEPTED
input |
---|
100 1 2 1 3 2 4 2 5 ... |
correct output |
---|
5000 |
user output |
---|
5000 |
Test 13
Group: 2
Verdict: ACCEPTED
input |
---|
100000 1 2 1 3 2 4 2 5 ... |
correct output |
---|
50000000000000 |
user output |
---|
50000000000000 |