| Task: | Laskettelukeskus |
| Sender: | EmuBird |
| Submission time: | 2023-10-31 17:06:42 +0200 |
| Language: | Rust |
| Status: | READY |
| Result: | 100 |
| group | verdict | score |
|---|---|---|
| #1 | ACCEPTED | 53 |
| #2 | ACCEPTED | 47 |
| test | verdict | time | group | |
|---|---|---|---|---|
| #1 | ACCEPTED | 0.00 s | 1, 2 | details |
| #2 | ACCEPTED | 0.00 s | 1, 2 | details |
| #3 | ACCEPTED | 0.00 s | 1, 2 | details |
| #4 | ACCEPTED | 0.17 s | 2 | details |
| #5 | ACCEPTED | 0.19 s | 2 | details |
| #6 | ACCEPTED | 0.00 s | 1, 2 | details |
| #7 | ACCEPTED | 0.16 s | 2 | details |
| #8 | ACCEPTED | 0.00 s | 1, 2 | details |
| #9 | ACCEPTED | 0.12 s | 2 | details |
| #10 | ACCEPTED | 0.00 s | 1, 2 | details |
| #11 | ACCEPTED | 0.14 s | 2 | details |
| #12 | ACCEPTED | 0.00 s | 1, 2 | details |
| #13 | ACCEPTED | 0.14 s | 2 | details |
Code
use std::cmp::max;
use std::collections::{HashMap, HashSet};
use std::io;
fn main() {
let stdin = io::stdin();
let slope_count = { // AKA n
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
input.replace("\r", "").replace("\n", "").parse::<usize>().unwrap()
};
// All slopes indexed by their IDs.
let mut slopes = {
let mut slopes: Vec<SkiSlope> = Vec::with_capacity(slope_count);
for _ in 0..slope_count {
slopes.push(SkiSlope {
upward_connections: HashSet::new(),
downward_connections: HashSet::new(),
plows: 0, // Will be initialized later.
child_plows: 0 // Will be initialized later.
});
}
slopes
};
// Read routes
{
// Read line slope_count - 1 times
for _ in 1..slope_count {
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
let route: Vec<usize> = input.replace("\r", "").replace("\n", "").split_whitespace().map(|value| {
value.parse::<usize>().unwrap() - 1 // Indexes are given starting from 1, so they need to be decremented
}).collect();
// A route exists from route[0] (upper) to route[1] (lower).
slopes[route[1]].upward_connections.insert(route[0]);
slopes[route[0]].downward_connections.insert(route[1]);
}
};
// Read number of required plows.
{
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
input
.replace("\r", "")
.replace("\n", "")
.split_whitespace()
.enumerate()
.for_each(|(i, value)| {
slopes[i].plows = value.parse().unwrap();
});
}
// List of ski slopes indexed by their depth from the root slope. Depth is 0 for the root slope.
// Otherwise this could be calculated while taking input, but it's possible depth would be determined before the parent's depth is calculated.
let depth_map: Vec<HashSet<usize>> = {
let mut depth_map: Vec<HashSet<usize>> = Vec::new();
depth_map.insert(0, HashSet::from([ 0 ])); // Root slope is at depth 0.
// Calculate required plows from bottom to top.
// key-value pairs of slopes to be processed
let mut loop_slopes: HashMap<usize, usize> = HashMap::with_capacity(1);
loop_slopes.insert(0, 0); // Adds root slope manually.
while !&loop_slopes.is_empty() {
let mut next_slopes = HashMap::new();
for (parent_slope_id, depth) in &loop_slopes {
let slope = &slopes[*parent_slope_id];
let new_depth = depth + 1;
if depth_map.len() >= new_depth {
depth_map.push(HashSet::new());
}
let set = &mut depth_map[new_depth];
for lower_slope_id in slope.downward_connections.clone() {
set.insert(lower_slope_id);
next_slopes.insert(lower_slope_id, new_depth);
}
}
loop_slopes = next_slopes;
}
depth_map
};
// Calculate required plows in reverse depth order.
for slope_ids in depth_map.iter().rev() {
for slope_id in slope_ids {
let slope = &mut slopes[*slope_id];
slope.plows = max(slope.plows, slope.child_plows);
let plows = slope.plows;
for upper_slope_id in slope.upward_connections.clone() {
let mut upper_slope = &mut slopes[upper_slope_id];
upper_slope.child_plows += plows;
}
}
}
println!("{}", slopes[0].plows); // Print required plows for the root ski slope.
}
struct SkiSlope {
upward_connections: HashSet<usize>,
downward_connections: HashSet<usize>,
plows: u64, // number of required plows,
child_plows: u64 // required plows of all children combined
}
Test details
Test 1
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 5 1 2 1 3 3 4 3 5 ... |
| correct output |
|---|
| 6 |
| user output |
|---|
| 6 |
Test 2
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 73 1 64 64 23 1 88 ... |
| correct output |
|---|
| 2675 |
| user output |
|---|
| 2675 |
Test 3
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 36 36 56 56 59 36 97 ... |
| correct output |
|---|
| 2808 |
| user output |
|---|
| 2808 |
Test 4
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 45452 1 74209 45452 78960 45452 79820 ... |
| correct output |
|---|
| 28399367694319 |
| user output |
|---|
| 28399367694319 |
Test 5
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 31165 1 23263 31165 89516 31165 53122 ... |
| correct output |
|---|
| 28546840313799 |
| user output |
|---|
| 28546840313799 |
Test 6
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 79 79 9 79 45 45 10 ... |
| correct output |
|---|
| 0 |
| user output |
|---|
| 0 |
Test 7
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 66038 1 56789 56789 7403 66038 69542 ... |
| correct output |
|---|
| 0 |
| user output |
|---|
| 0 |
Test 8
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 2 2 3 3 4 4 5 ... |
| correct output |
|---|
| 100 |
| user output |
|---|
| 100 |
Test 9
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 2 2 3 3 4 4 5 ... |
| correct output |
|---|
| 1000000000 |
| user output |
|---|
| 1000000000 |
Test 10
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 2 1 3 2 4 2 5 ... |
| correct output |
|---|
| 2809 |
| user output |
|---|
| 2809 |
Test 11
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 2 1 3 2 4 2 5 ... |
| correct output |
|---|
| 26053917212428 |
| user output |
|---|
| 26053917212428 |
Test 12
Group: 1, 2
Verdict: ACCEPTED
| input |
|---|
| 100 1 2 1 3 2 4 2 5 ... |
| correct output |
|---|
| 5000 |
| user output |
|---|
| 5000 |
Test 13
Group: 2
Verdict: ACCEPTED
| input |
|---|
| 100000 1 2 1 3 2 4 2 5 ... |
| correct output |
|---|
| 50000000000000 |
| user output |
|---|
| 50000000000000 |
