CSES - Datatähti 2024 alku - Results
Submission details
Task:Laskettelukeskus
Sender:EmuBird
Submission time:2023-10-31 14:59:42 +0200
Language:Rust
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
Test results
testverdicttimegroup
#1ACCEPTED0.00 s1, 2details
#20.00 s1, 2details
#30.00 s1, 2details
#40.13 s2details
#50.14 s2details
#6ACCEPTED0.00 s1, 2details
#7ACCEPTED0.13 s2details
#8ACCEPTED0.00 s1, 2details
#9ACCEPTED0.09 s2details
#100.00 s1, 2details
#110.10 s2details
#120.00 s1, 2details
#130.10 s2details

Code

use std::cmp::max;
use std::collections::HashSet;
use std::io;
fn main() {
let stdin = io::stdin();
let slope_count = { // AKA n
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
input.replace("\r", "").replace("\n", "").parse::<usize>().unwrap()
};
let (mut slopes, mut bottom_slopes) = {
// All slopes indexed by their IDs.
let mut slopes: Vec<SkiSlope> = Vec::with_capacity(slope_count);
// IDs of slopes with no route below. Initially, every slope.
let mut bottom_slopes = HashSet::with_capacity(slope_count);
for i in 0..slope_count {
slopes.push(SkiSlope {
upward_connections: HashSet::new(),
plows: 0, // Will be initialized later.
child_plows: 0 // Will be initialized later.
});
bottom_slopes.insert(i);
}
(slopes, bottom_slopes)
};
// Read routes
{
// Read line slope_count - 1 times
for _ in 1..slope_count {
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
let route: Vec<usize> = input.replace("\r", "").replace("\n", "").split_whitespace().map(|value| {
value.parse::<usize>().unwrap() - 1 // Indexes are given starting from 1, so they need to be decremented
}).collect();
// A route exists from route[0] to route[1].
// route[0] continues downwards, and must be removed from bottom_slopes.
bottom_slopes.remove(&route[0]);
slopes[route[1]].upward_connections.insert(route[0]);
}
};
// Read number of required plows.
{
let mut input: String = String::new();
stdin.read_line(&mut input).unwrap();
input
.replace("\r", "")
.replace("\n", "")
.split_whitespace()
.enumerate()
.for_each(|(i, value)| {
slopes[i].plows = value.parse::<u32>().unwrap()
});
}
// Calculate required plows from bottom to top.
while !&bottom_slopes.is_empty() {
let mut next_slopes = HashSet::new();
for bottom_slope_id in &bottom_slopes {
let slope = &mut slopes[*bottom_slope_id];
slope.plows = max(slope.plows, slope.child_plows);
let plows = slope.plows;
for upper_slope_id in slope.upward_connections.clone() {
let mut upper_slope = &mut slopes[upper_slope_id];
upper_slope.child_plows += plows;
next_slopes.insert(upper_slope_id);
}
}
bottom_slopes = next_slopes;
}
println!("{}", slopes[0].plows); // Print required plows for the root ski slope.
}
struct SkiSlope {
upward_connections: HashSet<usize>,
plows: u32, // number of required plows,
child_plows: u32 // required plows of all children combined
}

Test details

Test 1

Group: 1, 2

Verdict: ACCEPTED

input
5
1 2
1 3
3 4
3 5
...

correct output
6

user output
6

Test 2

Group: 1, 2

Verdict:

input
100
1 73
1 64
64 23
1 88
...

correct output
2675

user output
21660

Test 3

Group: 1, 2

Verdict:

input
100
1 36
36 56
56 59
36 97
...

correct output
2808

user output
92949

Test 4

Group: 2

Verdict:

input
100000
1 45452
1 74209
45452 78960
45452 79820
...

correct output
28399367694319

user output
4108411087

Test 5

Group: 2

Verdict:

input
100000
1 31165
1 23263
31165 89516
31165 53122
...

correct output
28546840313799

user output
4248666980

Test 6

Group: 1, 2

Verdict: ACCEPTED

input
100
1 79
79 9
79 45
45 10
...

correct output
0

user output
0

Test 7

Group: 2

Verdict: ACCEPTED

input
100000
1 66038
1 56789
56789 7403
66038 69542
...

correct output
0

user output
0

Test 8

Group: 1, 2

Verdict: ACCEPTED

input
100
1 2
2 3
3 4
4 5
...

correct output
100

user output
100

Test 9

Group: 2

Verdict: ACCEPTED

input
100000
1 2
2 3
3 4
4 5
...

correct output
1000000000

user output
1000000000

Test 10

Group: 1, 2

Verdict:

input
100
1 2
1 3
2 4
2 5
...

correct output
2809

user output
5793

Test 11

Group: 2

Verdict:

input
100000
1 2
1 3
2 4
2 5
...

correct output
26053917212428

user output
3143251763

Test 12

Group: 1, 2

Verdict:

input
100
1 2
1 3
2 4
2 5
...

correct output
5000

user output
8400

Test 13

Group: 2

Verdict:

input
100000
1 2
1 3
2 4
2 5
...

correct output
50000000000000

user output
3510719488