- Time limit: 10.00 s
- Memory limit: 512 MB
The first input line contains an integer $t$: the number of test cases. Then there are $t$ test cases, described as follows:
First there is a line with two numbers, $n$ and $m$, which indicates the size of the maze: $n$ blocks tall and $m$ blocks wide.
Then there is a line with two numbers, $a$ and $b$, indicating the position of the entrance and exit, with $2 \le a \le m-1$, and $2 \le b \le m-1$. The entrance is in the top row, in column $a$, and the exit is in the bottom row, in column $b$.
Finally, there are $n$ lines, with $m$ characters on each row. The characters are either
0
or 1
, indicating a block of empty space or a block of solid wall, respectively.All blocks on the perimeter of the maze are walls, with the exception of the entrance and exit, which are empty.
Output
Output $t$ lines, one per test case. For each test case, output
YES
if there is a way to navigate the stick through the maze from the entrance to the exit, and NO
otherwise.Limits
- $1 \le t \le 50$
- $3 \le n \le 30$
- $1 \le m \le 30$
Here we have four test cases, the first one is illustrated above.
Input:
4
13 16
8 13
1111111011111111
1111111011110001
1111111011110001
1111111011110001
1111111011110001
1000000000000001
1000111011110111
1000111011110111
1000111011110111
1000000011110111
1000000011110111
1000000011110111
1111111111110111
13 16
8 13
1111111011111111
1111111011110001
1111111011110001
1111111011110001
1111111011110001
1000000000000001
1011111011110111
1011111011110111
1011111011110111
1011111011110111
1011111011110111
1000000011110111
1111111111110111
13 16
8 13
1111111011111111
1111111011111111
1111111011110001
1111111011110001
1111111011110001
1000000000000001
1000111011110111
1000111011110111
1000111011110111
1000000011110111
1000000011110111
1000000011110111
1111111111110111
1 3
2 2
101
Output:
YES
NO
NO
YES