You are given n⋅(m+1) coefficients ai,j and bi which form the following n linear equations:
- a1,1x1+a1,2x2+⋯+a1,mxm=b1(mod109+7)
- a2,1x1+a2,2x2+⋯+a2,mxm=b2(mod109+7)
- …
- an,1x1+an,2x2+⋯+an,mxm=bn(mod109+7)
Your task is to find any m integers x1,x2,…,xm that satisfy the given equations.
The first line has two integers n and m: the number of equations and variables.
The next n lines each have m+1 integers ai,1,ai,2,…,ai,m,bi: the coefficients of the i-th equation.
Output
Print m integers x1,x2,…,xm: the values of the variables that satisfy the equations. The values must also satisfy 0≤xi<109+7. You can print any valid solution. If no solution exists print only −1.
Constraints
- 1≤n,m≤500
- 0≤ai,j,bi<109+7
Example
Input:
3 3
2 0 1 7
1 2 0 0
1 3 1 2
Output:
2 1000000006 3