CSES - System of Linear Equations
  • Time limit: 1.00 s
  • Memory limit: 512 MB

You are given n(m+1)n\cdot(m+1) coefficients ai,ja_{i,j} and bib_i which form the following nn linear equations:

  • a1,1x1+a1,2x2++a1,mxm=b1(mod109+7)a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m = b_1 \pmod {10^9 + 7}
  • a2,1x1+a2,2x2++a2,mxm=b2(mod109+7)a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m = b_2 \pmod {10^9 + 7}
  • \dots
  • an,1x1+an,2x2++an,mxm=bn(mod109+7)a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m = b_n \pmod {10^9 + 7}

Your task is to find any mm integers x1,x2,,xmx_1, x_2, \dots, x_m that satisfy the given equations.

Input

The first line has two integers nn and mm: the number of equations and variables.

The next nn lines each have m+1m+1 integers ai,1,ai,2,,ai,m,bia_{i,1}, a_{i,2}, \dots, a_{i,m}, b_i: the coefficients of the ii-th equation.

Output

Print mm integers x1,x2,,xmx_1, x_2,\dots, x_m: the values of the variables that satisfy the equations. The values must also satisfy 0xi<109+70 \le x_i < 10^9 + 7. You can print any valid solution. If no solution exists print only 1-1.

Constraints

  • 1n,m5001 \le n, m \le 500
  • 0ai,j,bi<109+70 \le a_{i,j}, b_i < 10^9 + 7

Example

Input:

3 3
2 0 1 7
1 2 0 0
1 3 1 2

Output:

2 1000000006 3