CSES - K Subset Sums II
  • Time limit: 1.00 s
  • Memory limit: 512 MB

You are given an array of nn integers. Consider the sums of all (nm)\binom{n}{m} subsets of the given array with exactly mm elements.

Your task is to find the kk smallest subset sums.

Input

The first line has three integers nn, mm and kk: the size of the array, the size of the subsets and the number of subset sums kk.

The next line has nn integers x1,x2,,xnx_1, x_2,\dots, x_n: the contents of the array.

Output

Print kk integers: the kk smallest subset sums in increasing order.

Constraints

  • 1m<n21051 \le m < n \le 2 \cdot 10^5
  • 1kmin((nm),2105)1 \le k \le \min\left(\binom{n}{m}, 2 \cdot 10^5\right)
  • 109xi109-10^9 \le x_i \le 10^9

Example

Input:

5 3 9
-3 1 5 2 0

Output:

-2 -1 0 2 3 3 4 6 7