CSES - Coin Combinations I
  • Time limit: 1.00 s
  • Memory limit: 512 MB
Consider a money system consisting of $n$ coins. Each coin has a positive integer value. Your task is to calculate the number of distinct ways you can produce a money sum $x$ using the available coins.

For example, if the coins are $\{2,3,5\}$ and the desired sum is $9$, there are $8$ ways:
  • $2+2+5$
  • $2+5+2$
  • $5+2+2$
  • $3+3+3$
  • $2+2+2+3$
  • $2+2+3+2$
  • $2+3+2+2$
  • $3+2+2+2$
Input

The first input line has two integers $n$ and $x$: the number of coins and the desired sum of money.

The second line has $n$ distinct integers $c_1,c_2,\dots,c_n$: the value of each coin.

Output

Print one integer: the number of ways modulo $10^9+7$.

Constraints
  • $1 \le n \le 100$
  • $1 \le x \le 10^6$
  • $1 \le c_i \le 10^6$
Example

Input:
3 9
2 3 5


Output:
8