You are given a bit string with n characters. In each step, you may erase two adjacent bits that are different. How many ways there are to erase all bits?
For example, when the bit string is 101100, there are 5 possible ways:
- \underline{10}1100 \rightarrow 1\underline{10}0 \rightarrow \underline{10} \rightarrow (empty)
- 1\underline{01}100 \rightarrow 1\underline{10}0 \rightarrow \underline{10} \rightarrow (empty)
- 101\underline{10}0 \rightarrow \underline{10}10 \rightarrow \underline{10} \rightarrow (empty)
- 101\underline{10}0 \rightarrow 1\underline{01}0 \rightarrow \underline{10} \rightarrow (empty)
- 101\underline{10}0 \rightarrow 10\underline{10} \rightarrow \underline{10} \rightarrow (empty)
You may assume that 1 \le n \le 30. The algorithm should be efficient in all these cases.
In a file biterase.py
, implement a function count
that returns the number of ways to erase all bits.
def count(s): # TODO if __name__ == "__main__": print(count("1001")) # 2 print(count("1100")) # 1 print(count("101100")) # 5 print(count("11001")) # 0 print(count("01110100100110")) # 6027