CSES - Datatähti 2023 alku - Results
Submission details
Task:Sadonkorjuu
Sender:Sup
Submission time:2022-11-13 23:50:38 +0200
Language:C++ (C++11)
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
Test results
testverdicttimegroup
#1ACCEPTED0.00 s1, 2details
#20.00 s1, 2details
#3ACCEPTED0.00 s1, 2details
#40.00 s1, 2details
#50.00 s1, 2details
#6ACCEPTED0.01 s1, 2details
#7ACCEPTED0.35 s2details
#80.06 s1, 2details
#9--2details
#100.11 s1, 2details
#11--2details
#120.27 s2details
#13--2details
#14--2details
#15ACCEPTED0.01 s1, 2details
#160.02 s1, 2details
#170.03 s1, 2details
#180.01 s1, 2details
#190.09 s1, 2details
#200.05 s1, 2details
#21--2details
#22--2details
#23--2details
#240.05 s1, 2details
#25--2details
#260.03 s1, 2details
#27--2details
#28ACCEPTED0.01 s1, 2details
#29ACCEPTED0.27 s2details
#30ACCEPTED0.01 s1, 2details
#31ACCEPTED0.33 s2details

Code

#include <bits/stdc++.h>
using namespace std; 
#define INF 0x3f3f3f3f
#include<list> 
 
// iPair ==> Integer Pair
typedef pair<int, int> iPair;
 
// This class represents a directed graph using
// adjacency list representation
class Graph {
    int V; // No. of vertices
 
    // In a weighted graph, we need to store vertex
    // and weight pair for every edge
    list<pair<int, int> >* adj;
 
public:
    Graph(int V); // Constructor
 
    //    ction to add an edge to graph
    void addEdge(int u, int v, int w);
 
    // prints shortest path from s
    vector<int> shortestPath(int s);
};
 
// Allocates memory for adjacency list
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<iPair>[V];
}
 
void Graph::addEdge(int u, int v, int w)
{
    adj[u].push_back(make_pair(v, w));
    adj[v].push_back(make_pair(u, w));
}
 
// Prints shortest paths from src to all other vertices
vector<int> Graph::shortestPath(int src)
{
    // Create a priority queue to store vertices that
    // are being preprocessed. This is weird syntax in C++.
    // Refer below link for details of this syntax
    // https://www.geeksforgeeks.org/implement-min-heap-using-stl/
    priority_queue<iPair, vector<iPair>, greater<iPair> >
        pq;
 
    // Create a vector for distances and initialize all
    // distances as infinite (INF)
    vector<int> dist(V, INF);
 
    // Insert source itself in priority queue and initialize
    // its distance as 0.
    pq.push(make_pair(0, src));
    dist[src] = 0;
 
    /* Looping till priority queue becomes empty (or all
    distances are not finalized) */
    while (!pq.empty()) {
        // The first vertex in pair is the minimum distance
        // vertex, extract it from priority queue.
        // vertex label is stored in second of pair (it
        // has to be done this way to keep the vertices
        // sorted distance (distance must be first item
        // in pair)
        int u = pq.top().second;
        pq.pop();
 
        // 'i' is used to get all adjacent vertices of a
        // vertex
        list<pair<int, int> >::iterator i;
        for (i = adj[u].begin(); i != adj[u].end(); ++i) {
            // Get vertex label and weight of current
            // adjacent of u.
            int v = (*i).first;
            int weight = (*i).second;
 
            // If there is shorted path to v through u.
            if (dist[v] > dist[u] + weight) {
                // Updating distance of v
                dist[v] = dist[u] + weight;
                pq.push(make_pair(dist[v], v));
            }
        }
    }
 
    // Print shortest distances stored in dist[]
    /*
    printf("Vertex Distance from Source\n");
    for (int i = 0; i < V; ++i)
        printf("%d \t\t %d\n", i, dist[i]);*/

    return dist;
}

// Driver's code
int main()
{

    int amount_of_cities; //gets the number of cities that we will have as input
    int amount_of_paths; // we calculate the amount of path between the cities, which is (amount_of_cities-1)

    int city_identity_number;
    list<int> city_identifier = {}; // this is the list in which we store the value of 1 and 0 that identifies, if the city has a port or a farm.

    list<int> the_list_for_farms = {};   // this is the list that will keep all of the verteces, with the value 1.
    list<int> the_list_for_ports = {};  // this is the list that will keep all the verteces with the value 0.

    

    list<int> the_ordinal_number_of_vertex = {};

    int distance_between_2_cities;  // the rows of input that we will get, basically the distance between 2 points.

    int starting_vertex;
    int end_vertex;
    int the_distance;

    cin >> amount_of_cities; //input to see how many verteces we will have.

    amount_of_paths = amount_of_cities - 1;

    //int array_of_distances[]

    Graph g(amount_of_cities);

    for (int k = 0; k < amount_of_cities; k++){
        cin >> city_identity_number;
        city_identifier.push_back(city_identity_number);

        if (city_identity_number == 1){
            the_list_for_ports.push_back(k);
        }
        if (city_identity_number == 0){
            the_list_for_farms.push_back(k);
        }
    }


    //cout << "the first loop is done" << endl;

    for (int i = 0; i < amount_of_paths; i++){
        for (int j = 0; j < 3; j++){
            cin >> distance_between_2_cities;
            if (j == 0){
                starting_vertex = distance_between_2_cities-1;
                //the_list_for_farms.insert(distance_between_2_cities)
            }
            if (j == 1){
                end_vertex = distance_between_2_cities-1;
                //the_list_for_ports.insert(distance_between_2_cities)
            }
            if (j == 2){
                the_distance = distance_between_2_cities; 
            }
        }
        g.addEdge(starting_vertex, end_vertex, the_distance);
    }
    // create the graph given in above figure
    //int V = 9;
    //Graph g(V);
 
    // making above shown graph
    /*g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);
    */
 
    // Function call

    vector<int> list_of_distances;

    vector<int> list_for_port_distances;
    



    int shortest_path = 0;

    for (auto i : the_list_for_farms){

        //cout << i << endl;

        list_of_distances = g.shortestPath(i);
        //int minDist = INF;
        //int distance;
        /*for (auto l : the_list_for_ports){
            distance = list_of_distances[l];
            if(distance < minDist){
                minDist = distance;
            }
            //list_for_port_distances.push_back(list_of_distances[l])
        }*/

        if (list_for_port_distances.size() == 0) {
            list_for_port_distances = list_of_distances;
        }

        //list_for_port_distances.push_back(list_of_distances[i])

        if (list_for_port_distances.size() != 0) {
            for (int ii = 0; ii < amount_of_paths; ii++){
                if (list_for_port_distances[ii] > list_of_distances[ii]){
                    list_for_port_distances[ii] = list_of_distances[ii];
                }
            }
        }

    }

    for (auto jj : list_for_port_distances){
        shortest_path += jj;
    }

    cout << shortest_path << endl;


    //g.shortestPath(0);
 
    return 0;
}

Test details

Test 1

Group: 1, 2

Verdict: ACCEPTED

input
1
0

correct output
0

user output
0

Test 2

Group: 1, 2

Verdict:

input
5
0 0 0 0 0
1 2 1
2 3 2
3 4 3
...

correct output
0

user output
10

Test 3

Group: 1, 2

Verdict: ACCEPTED

input
4
1 0 1 1
1 2 10
2 3 20
2 4 30

correct output
60

user output
60

Test 4

Group: 1, 2

Verdict:

input
5
0 1 1 1 0
1 2 10
2 3 20
3 4 30
...

correct output
80

user output
180

Test 5

Group: 1, 2

Verdict:

input
5
0 1 0 1 1
1 2 1
2 3 5
3 4 3
...

correct output
6

user output
12

Test 6

Group: 1, 2

Verdict: ACCEPTED

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
5506363

user output
5506363

Test 7

Group: 2

Verdict: ACCEPTED

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1795118520

user output
1795118520

Test 8

Group: 1, 2

Verdict:

input
1000
0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 ...

correct output
293576

user output
294796

Test 9

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
816932444

user output
(empty)

Test 10

Group: 1, 2

Verdict:

input
1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
3089

user output
5464

Test 11

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
40839

user output
(empty)

Test 12

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
5683983203973

user output
1741471365

Test 13

Group: 2

Verdict:

input
200000
0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 ...

correct output
58572993

user output
(empty)

Test 14

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
32755

user output
(empty)

Test 15

Group: 1, 2

Verdict: ACCEPTED

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
126238345

user output
126238345

Test 16

Group: 1, 2

Verdict:

input
1000
0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 ...

correct output
278678

user output
772042

Test 17

Group: 1, 2

Verdict:

input
1000
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ...

correct output
34929

user output
526082

Test 18

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1543963

user output
1549125

Test 19

Group: 1, 2

Verdict:

input
1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
39606

user output
44295

Test 20

Group: 1, 2

Verdict:

input
1000
1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 ...

correct output
321598

user output
326281

Test 21

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
978670626

user output
(empty)

Test 22

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
375218

user output
(empty)

Test 23

Group: 2

Verdict:

input
200000
1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 ...

correct output
60422556

user output
(empty)

Test 24

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
291990

user output
295263

Test 25

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
59607954

user output
(empty)

Test 26

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
990

user output
995

Test 27

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
199982

user output
(empty)

Test 28

Group: 1, 2

Verdict: ACCEPTED

input
1000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
7987

user output
7987

Test 29

Group: 2

Verdict: ACCEPTED

input
200000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
3137875

user output
3137875

Test 30

Group: 1, 2

Verdict: ACCEPTED

input
1000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
4657693

user output
4657693

Test 31

Group: 2

Verdict: ACCEPTED

input
200000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1652889357

user output
1652889357