CSES - Datatähti 2023 alku - Results
Submission details
Task:Sadonkorjuu
Sender:Ihminen
Submission time:2022-11-13 18:38:23 +0200
Language:C++ (C++17)
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
Test results
testverdicttimegroup
#10.00 s1, 2details
#20.00 s1, 2details
#30.00 s1, 2details
#40.00 s1, 2details
#50.00 s1, 2details
#60.00 s1, 2details
#70.00 s2details
#80.00 s1, 2details
#90.00 s2details
#100.00 s1, 2details
#110.00 s2details
#120.00 s2details
#130.00 s2details
#140.00 s2details
#150.00 s1, 2details
#160.00 s1, 2details
#170.00 s1, 2details
#180.00 s1, 2details
#190.00 s1, 2details
#200.00 s1, 2details
#210.00 s2details
#220.00 s2details
#230.00 s2details
#240.00 s1, 2details
#250.00 s2details
#260.00 s1, 2details
#270.00 s2details
#280.00 s1, 2details
#290.00 s2details
#300.00 s1, 2details
#310.00 s2details

Compiler report

input/code.cpp: In function 'void dijkstra(Graph*, int)':
input/code.cpp:305:23: warning: '*dist[src]' may be used uninitialized [-Wmaybe-uninitialized]
  305 |         newMinHeapNode(src, dist[src]);
      |         ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>

// A structure to represent a
// node in adjacency list
struct AdjListNode
{
    int dest;
    int weight;
    struct AdjListNode* next;
};

// A structure to represent
// an adjacency list
struct AdjList
{

    // Pointer to head node of list
    struct AdjListNode* head;
};

// A structure to represent a graph.
// A graph is an array of adjacency lists.
// Size of array will be V (number of
// vertices in graph)
struct Graph
{
    int V;
    struct AdjList* array;
};

// A utility function to create
// a new adjacency list node
struct AdjListNode* newAdjListNode(
    int dest, int weight)
{
    struct AdjListNode* newNode =
        (struct AdjListNode*)
        malloc(sizeof(struct AdjListNode));
    newNode->dest = dest;
    newNode->weight = weight;
    newNode->next = NULL;
    return newNode;
}

// A utility function that creates
// a graph of V vertices
struct Graph* createGraph(int V)
{
    struct Graph* graph = (struct Graph*)
        malloc(sizeof(struct Graph));
    graph->V = V;

    // Create an array of adjacency lists. 
    // Size of array will be V
    graph->array = (struct AdjList*)
        malloc(V * sizeof(struct AdjList));

    // Initialize each adjacency list
    // as empty by making head as NULL
    for (int i = 0; i < V; ++i)
        graph->array[i].head = NULL;

    return graph;
}

// Adds an edge to an undirected graph
void addEdge(struct Graph* graph, int src,
    int dest, int weight)
{
    // Add an edge from src to dest. 
    // A new node is added to the adjacency
    // list of src.  The node is
    // added at the beginning
    struct AdjListNode* newNode =
        newAdjListNode(dest, weight);
    newNode->next = graph->array[src].head;
    graph->array[src].head = newNode;

    // Since graph is undirected,
    // add an edge from dest to src also
    newNode = newAdjListNode(src, weight);
    newNode->next = graph->array[dest].head;
    graph->array[dest].head = newNode;
}

// Structure to represent a min heap node
struct MinHeapNode
{
    int  v;
    int dist;
};

// Structure to represent a min heap
struct MinHeap
{

    // Number of heap nodes present currently
    int size;

    // Capacity of min heap
    int capacity;

    // This is needed for decreaseKey()
    int* pos;
    struct MinHeapNode** array;
};

// A utility function to create a
// new Min Heap Node
struct MinHeapNode* newMinHeapNode(int v,
    int dist)
{
    struct MinHeapNode* minHeapNode =
        (struct MinHeapNode*)
        malloc(sizeof(struct MinHeapNode));
    minHeapNode->v = v;
    minHeapNode->dist = dist;
    return minHeapNode;
}

// A utility function to create a Min Heap
struct MinHeap* createMinHeap(int capacity)
{
    struct MinHeap* minHeap =
        (struct MinHeap*)
        malloc(sizeof(struct MinHeap));
    minHeap->pos = (int*)malloc(
        capacity * sizeof(int));
    minHeap->size = 0;
    minHeap->capacity = capacity;
    minHeap->array =
        (struct MinHeapNode**)
        malloc(capacity *
            sizeof(struct MinHeapNode*));
    return minHeap;
}

// A utility function to swap two
// nodes of min heap.
// Needed for min heapify
void swapMinHeapNode(struct MinHeapNode** a,
    struct MinHeapNode** b)
{
    struct MinHeapNode* t = *a;
    *a = *b;
    *b = t;
}

// A standard function to
// heapify at given idx
// This function also updates
// position of nodes when they are swapped.
// Position is needed for decreaseKey()
void minHeapify(struct MinHeap* minHeap,
    int idx)
{
    int smallest, left, right;
    smallest = idx;
    left = 2 * idx + 1;
    right = 2 * idx + 2;

    if (left < minHeap->size &&
        minHeap->array[left]->dist <
        minHeap->array[smallest]->dist)
        smallest = left;

    if (right < minHeap->size &&
        minHeap->array[right]->dist <
        minHeap->array[smallest]->dist)
        smallest = right;

    if (smallest != idx)
    {
        // The nodes to be swapped in min heap
        MinHeapNode* smallestNode =
            minHeap->array[smallest];
        MinHeapNode* idxNode =
            minHeap->array[idx];

        // Swap positions
        minHeap->pos[smallestNode->v] = idx;
        minHeap->pos[idxNode->v] = smallest;

        // Swap nodes
        swapMinHeapNode(&minHeap->array[smallest],
            &minHeap->array[idx]);

        minHeapify(minHeap, smallest);
    }
}

// A utility function to check if
// the given minHeap is empty or not
int isEmpty(struct MinHeap* minHeap)
{
    return minHeap->size == 0;
}

// Standard function to extract
// minimum node from heap
struct MinHeapNode* extractMin(struct MinHeap*
    minHeap)
{
    if (isEmpty(minHeap))
        return NULL;

    // Store the root node
    struct MinHeapNode* root =
        minHeap->array[0];

    // Replace root node with last node
    struct MinHeapNode* lastNode =
        minHeap->array[minHeap->size - 1];
    minHeap->array[0] = lastNode;

    // Update position of last node
    minHeap->pos[root->v] = minHeap->size - 1;
    minHeap->pos[lastNode->v] = 0;

    // Reduce heap size and heapify root
    --minHeap->size;
    minHeapify(minHeap, 0);

    return root;
}

// Function to decreasekey dist value
// of a given vertex v. This function
// uses pos[] of min heap to get the
// current index of node in min heap
void decreaseKey(struct MinHeap* minHeap,
    int v, int dist)
{
    // Get the index of v in  heap array
    int i = minHeap->pos[v];

    // Get the node and update its dist value
    minHeap->array[i]->dist = dist;

    // Travel up while the complete
    // tree is not heapified.
    // This is a O(Logn) loop
    while (i && minHeap->array[i]->dist <
        minHeap->array[(i - 1) / 2]->dist)
    {
        // Swap this node with its parent
        minHeap->pos[minHeap->array[i]->v] =
            (i - 1) / 2;
        minHeap->pos[minHeap->array[
            (i - 1) / 2]->v] = i;
        swapMinHeapNode(&minHeap->array[i],
            &minHeap->array[(i - 1) / 2]);

        // move to parent index
        i = (i - 1) / 2;
    }
}

// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap* minHeap, int v)
{
    if (minHeap->pos[v] < minHeap->size)
        return true;
    return false;
}

// A utility function used to print the solution
void printArr(int dist[], int n)
{
    printf("Vertex   Distance from Source\n");
    for (int i = 0; i < n; ++i)
        printf("%d \t\t %d\n", i, dist[i]);
}

// The main function that calculates
// distances of shortest paths from src to all
// vertices. It is a O(ELogV) function
void dijkstra(struct Graph* graph, int src)
{

    // Get the number of vertices in graph
    int V = graph->V;

    // dist values used to pick
    // minimum weight edge in cut
    int dist[V];

    // minHeap represents set E
    struct MinHeap* minHeap = createMinHeap(V);

    // Initialize min heap with all
    // vertices. dist value of all vertices
    for (int v = 0; v < V; ++v)
    {
        dist[v] = INT_MAX;
        minHeap->array[v] = newMinHeapNode(v,
            dist[v]);
        minHeap->pos[v] = v;
    }

    // Make dist value of src vertex
    // as 0 so that it is extracted first
    minHeap->array[src] =
        newMinHeapNode(src, dist[src]);
    minHeap->pos[src] = src;
    dist[src] = 0;
    decreaseKey(minHeap, src, dist[src]);

    // Initially size of min heap is equal to V
    minHeap->size = V;

    // In the following loop,
    // min heap contains all nodes
    // whose shortest distance
    // is not yet finalized.
    while (!isEmpty(minHeap))
    {
        // Extract the vertex with
        // minimum distance value
        struct MinHeapNode* minHeapNode =
            extractMin(minHeap);

        // Store the extracted vertex number
        int u = minHeapNode->v;

        // Traverse through all adjacent
        // vertices of u (the extracted
        // vertex) and update
        // their distance values
        struct AdjListNode* pCrawl =
            graph->array[u].head;
        while (pCrawl != NULL)
        {
            int v = pCrawl->dest;

            // If shortest distance to v is
            // not finalized yet, and distance to v
            // through u is less than its
            // previously calculated distance
            if (isInMinHeap(minHeap, v) &&
                dist[u] != INT_MAX &&
                pCrawl->weight + dist[u] < dist[v])
            {
                dist[v] = dist[u] + pCrawl->weight;

                // update distance
                // value in min heap also
                decreaseKey(minHeap, v, dist[v]);
            }
            pCrawl = pCrawl->next;
        }
    }

    // print the calculated shortest distances
    printArr(dist, V);
}


// Driver program to test above functions
int main()
{
    // create the graph given in above figure
    int V = 9;
    struct Graph* graph = createGraph(V);
    addEdge(graph, 0, 1, 4);
    addEdge(graph, 0, 7, 8);
    addEdge(graph, 1, 2, 8);
    addEdge(graph, 1, 7, 11);
    addEdge(graph, 2, 3, 7);
    addEdge(graph, 2, 8, 2);
    addEdge(graph, 2, 5, 4);
    addEdge(graph, 3, 4, 9);
    addEdge(graph, 3, 5, 14);
    addEdge(graph, 4, 5, 10);
    addEdge(graph, 5, 6, 2);
    addEdge(graph, 6, 7, 1);
    addEdge(graph, 6, 8, 6);
    addEdge(graph, 7, 8, 7);

    dijkstra(graph, 0);

    return 0;
}

Test details

Test 1

Group: 1, 2

Verdict:

input
1
0

correct output
0

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 2

Group: 1, 2

Verdict:

input
5
0 0 0 0 0
1 2 1
2 3 2
3 4 3
...

correct output
0

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 3

Group: 1, 2

Verdict:

input
4
1 0 1 1
1 2 10
2 3 20
2 4 30

correct output
60

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 4

Group: 1, 2

Verdict:

input
5
0 1 1 1 0
1 2 10
2 3 20
3 4 30
...

correct output
80

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 5

Group: 1, 2

Verdict:

input
5
0 1 0 1 1
1 2 1
2 3 5
3 4 3
...

correct output
6

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 6

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
5506363

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 7

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1795118520

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 8

Group: 1, 2

Verdict:

input
1000
0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 ...

correct output
293576

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 9

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
816932444

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 10

Group: 1, 2

Verdict:

input
1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
3089

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 11

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
40839

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 12

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
5683983203973

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 13

Group: 2

Verdict:

input
200000
0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 ...

correct output
58572993

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 14

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
32755

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 15

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
126238345

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 16

Group: 1, 2

Verdict:

input
1000
0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 ...

correct output
278678

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 17

Group: 1, 2

Verdict:

input
1000
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ...

correct output
34929

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 18

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1543963

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 19

Group: 1, 2

Verdict:

input
1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
39606

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 20

Group: 1, 2

Verdict:

input
1000
1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 ...

correct output
321598

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 21

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
978670626

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 22

Group: 2

Verdict:

input
200000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

correct output
375218

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 23

Group: 2

Verdict:

input
200000
1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 ...

correct output
60422556

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 24

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
291990

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 25

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
59607954

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 26

Group: 1, 2

Verdict:

input
1000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
990

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 27

Group: 2

Verdict:

input
200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
199982

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 28

Group: 1, 2

Verdict:

input
1000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
7987

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 29

Group: 2

Verdict:

input
200000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
3137875

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 30

Group: 1, 2

Verdict:

input
1000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
4657693

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated

Test 31

Group: 2

Verdict:

input
200000
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1652889357

user output
Vertex   Distance from Source
0   0
1   4
2   12
3   19
...
Truncated