Task: | Ruudukko |
Sender: | okkokko |
Submission time: | 2022-11-09 18:19:59 +0200 |
Language: | C++ (C++11) |
Status: | READY |
Result: | 61 |
group | verdict | score |
---|---|---|
#1 | ACCEPTED | 28 |
#2 | ACCEPTED | 33 |
#3 | TIME LIMIT EXCEEDED | 0 |
test | verdict | time | group | |
---|---|---|---|---|
#1 | ACCEPTED | 0.00 s | 1, 2, 3 | details |
#2 | ACCEPTED | 0.00 s | 1, 2, 3 | details |
#3 | ACCEPTED | 0.00 s | 1, 2, 3 | details |
#4 | ACCEPTED | 0.01 s | 2, 3 | details |
#5 | ACCEPTED | 0.01 s | 2, 3 | details |
#6 | ACCEPTED | 0.01 s | 2, 3 | details |
#7 | ACCEPTED | 0.54 s | 3 | details |
#8 | ACCEPTED | 0.64 s | 3 | details |
#9 | TIME LIMIT EXCEEDED | -- | 3 | details |
Code
#include <iostream> #include <vector> #include <unordered_set> #include <set> using namespace std; const int DIVISOR = 1000000007; vector<int> line_row(1000); vector<int> line_row_last(1000); vector<int> line_col(1000); vector<int> line_col_last(1000); vector<int> line_row_added(1000); vector<int> line_col_added(1000); set<tuple<int, int, int>> values_coords; int total = 0; int get_line_row(int y, int v) { if (v == line_row_last[y]) { return line_row[y]; } line_row_last[y] = v; int s; s = (line_row[y] + line_row_added[y]) % DIVISOR; line_row_added[y] = 0; line_row[y] = s; return s; } int get_line_col(int x, int v) { if (v == line_col_last[x]) { return line_col[x]; } line_col_last[x] = v; int s; s = (line_col[x] + line_col_added[x]) % DIVISOR; line_col_added[x] = 0; line_col[x] = s; return s; } int calculate_routes(int y, int x, int number) { int value; if (number == 1) { value = 1; } else { value = (get_line_col(x, number) + get_line_row(y, number) + 1) % DIVISOR; } total += value; total %= DIVISOR; line_row_added[y] += value; line_row_added[y] %= DIVISOR; line_col_added[x] += value; line_col_added[x] %= DIVISOR; return value; } class Node { // "Binary Search Tree node" public: vector<tuple<int, int>> values; Node *parent; Node *left; Node *right; int key; int marker = 0; bool is_root; bool has_left = false; bool has_right = false; int var_pos; Node(int key_) { key = key_; is_root = true; } Node(Node &parent_, int key_) { key = key_; parent = &parent_; marker = 0; } Node *next() { if (marker == 0) { marker += 1; if (has_left) { return left; } } if (marker == 1) { marker += 1; if (has_right) { return right; } } marker = 0; return parent; } void routes_calc() { for (auto v : values) { calculate_routes(key, get<1>(v), get<0>(v)); } } }; class BST { Node *root; BST(int middle) { Node node = Node(middle); root = &node; } void Insert(int key, tuple<int, int> value) { Node *node = search(key); if (node->var_pos == 1) { Node nod = Node(*node, key); node->left = &nod; node->left->values.push_back(value); node->has_left = true; } else if (node->var_pos == 2) { Node nod = Node(*node, key); node->right = &nod; node->right->values.push_back(value); node->has_right = true; } else { node->values.push_back(value); } } void Iter() { Node *node = root; Node *neue; while (true) { neue = node->next(); if (node == root and node->marker == 0) { break; } if (node->marker == 0) { // # neue is parent if (neue->marker == 1) { // node is left neue->routes_calc(); } } else if (neue->has_left == false) { neue->routes_calc(); } node = neue; } } Node *search(int key_) { // """returns a node and a number. // 0 means the node has the wanted value, // 1 means the value doesn't exist but would be the node's left branch if inserted, // 2 means the same as 1 but for the right branch.""" // # no recursion Node *current = root; while (true) { if (key_ < current->key) { if (current->has_left) { current = current->left; } else { current->var_pos = 1; return current; } } else if (key_ > current->key) { if (current->has_right) { current = current->right; } else { current->var_pos = 2; return current; } } else { current->var_pos = 0; return current; } } } }; int main() { int n; cin >> n; vector<vector<int>> grid; // grid.reserve(n * n); for (int i = 0; i < n; i++) { vector<int> b; for (int j = 0; j < n; j++) { int a; cin >> a; b.push_back(a); } grid.push_back(b); } vector<int> line_row(n, 0); vector<int> line_row_last(n, 1); vector<int> line_col(n, 0); vector<int> line_col_last(n, 1); vector<int> line_row_added(n, 0); vector<int> line_col_added(n, 0); // vector<unordered_set<int>> exists_row; // set<int> exists_all; for (int y = 0; y < n; y++) { // unordered_set<int> s; for (int x = 0; x < n; x++) { // s.insert(grid[y][x]); // exists_all.insert(grid[y][x]); values_coords.insert(make_tuple(grid[y][x], x, y)); } // exists_row.push_back(s); } set<tuple<int, int, int>>::iterator itr; for (itr = values_coords.begin(); itr != values_coords.end(); itr++) { calculate_routes(get<2>(*itr), get<1>(*itr), get<0>(*itr)); } cout << total << "\n"; return 0; }
Test details
Test 1
Group: 1, 2, 3
Verdict: ACCEPTED
input |
---|
3 1 1 1 1 1 1 1 1 1 |
correct output |
---|
9 |
user output |
---|
9 |
Test 2
Group: 1, 2, 3
Verdict: ACCEPTED
input |
---|
3 1 2 3 6 5 4 7 8 9 |
correct output |
---|
135 |
user output |
---|
135 |
Test 3
Group: 1, 2, 3
Verdict: ACCEPTED
input |
---|
3 7 8 1 4 5 4 3 9 6 |
correct output |
---|
57 |
user output |
---|
57 |
Test 4
Group: 2, 3
Verdict: ACCEPTED
input |
---|
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... |
correct output |
---|
10000 |
user output |
---|
10000 |
Test 5
Group: 2, 3
Verdict: ACCEPTED
input |
---|
100 1 2 3 4 5 6 7 8 9 10 11 12 13 ... |
correct output |
---|
187458477 |
user output |
---|
187458477 |
Test 6
Group: 2, 3
Verdict: ACCEPTED
input |
---|
100 2995 8734 1018 2513 7971 5063 ... |
correct output |
---|
964692694 |
user output |
---|
964692694 |
Test 7
Group: 3
Verdict: ACCEPTED
input |
---|
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... |
correct output |
---|
1000000 |
user output |
---|
1000000 |
Test 8
Group: 3
Verdict: ACCEPTED
input |
---|
1000 1 2 3 4 5 6 7 8 9 10 11 12 13 ... |
correct output |
---|
229147081 |
user output |
---|
229147081 |
Test 9
Group: 3
Verdict: TIME LIMIT EXCEEDED
input |
---|
1000 520283 805991 492643 75254 527... |
correct output |
---|
951147313 |
user output |
---|
(empty) |