CSES - Datatähti 2021 alku - Results
Submission details
Task:Ratsun reitit
Sender:Sartec
Submission time:2020-10-01 21:59:58 +0300
Language:Python3 (CPython3)
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
#30
Test results
testverdicttimegroup
#10.02 s1, 2, 3details
#20.02 s1, 2, 3details
#30.02 s1, 2, 3details
#40.03 s1, 2, 3details
#50.02 s1, 2, 3details
#60.02 s1, 2, 3details
#70.02 s1, 2, 3details
#80.03 s2, 3details
#90.03 s2, 3details
#100.03 s2, 3details
#110.04 s3details
#120.06 s3details
#130.06 s3details

Code

n2 = int(input(""))
dp = [[0 for i in range(n2)] for j in range(n2)];
print(dp)
startCoodinateX=0
startCoodinateY=0
def getsteps(x, y, tx, ty):
# if knight is on the target
# position return 0.
if (x == tx and y == ty):
return dp[0][0];
# if already calculated then return
# that value. Taking absolute difference.
elif(dp[abs(x - tx)][abs(y - ty)] != 0):
return dp[abs(x - tx)][abs(y - ty)];
else:
# there will be two distinct positions
# from the knight towards a target.
# if the target is in same row or column
# as of knight than there can be four
# positions towards the target but in that
# two would be the same and the other two
# would be the same.
x1, y1, x2, y2 = 0, 0, 0, 0;
# (x1, y1) and (x2, y2) are two positions.
# these can be different according to situation.
# From position of knight, the chess board can be
# divided into four blocks i.e.. N-E, E-S, S-W, W-N .
if (x <= tx):
if (y <= ty):
x1 = x + 2;
y1 = y + 1;
x2 = x + 1;
y2 = y + 2;
else:
x1 = x + 2;
y1 = y - 1;
x2 = x + 1;
y2 = y - 2;
elif (y <= ty):
x1 = x - 2;
y1 = y + 1;
x2 = x - 1;
y2 = y + 2;
else:
x1 = x - 2;
y1 = y - 1;
x2 = x - 1;
y2 = y - 2;
# ans will be, 1 + minimum of steps
# required from (x1, y1) and (x2, y2).
dp[abs(x - tx)][abs(y - ty)] = \
min(getsteps(x1, y1, tx, ty),
getsteps(x2, y2, tx, ty)) + 1;
# exchanging the coordinates x with y of both
# knight and target will result in same ans.
dp[abs(y - ty)][abs(x - tx)] = \
dp[abs(x - tx)][abs(y - ty)];
return dp[abs(x - tx)][abs(y - ty)];
# Driver Code
def stepsToPoint(targetX, targetY):
# size of chess board n*n
n = n2*n2;
# (x, y) coordinate of the knight.
# (tx, ty) coordinate of the target position.
x = 1;
y = n2;
tx = targetX;
ty = targetY;
# (Exception) these are the four corner points
# for which the minimum steps is 4.
if ((x == 1 and y == 1 and tx == 2 and ty == 2) or
(x == 2 and y == 2 and tx == 1 and ty == 1)):
ans = 4;
elif ((x == 1 and y == n and tx == 2 and ty == n - 1) or
(x == 2 and y == n - 1 and tx == 1 and ty == n)):
ans = 4;
elif ((x == n and y == 1 and tx == n - 1 and ty == 2) or
(x == n - 1 and y == 2 and tx == n and ty == 1)):
ans = 4;
elif ((x == n and y == n and tx == n - 1 and ty == n - 1)
or (x == n - 1 and y == n - 1 and tx == n and ty == n)):
ans = 4;
else:
# dp[a][b], here a, b is the difference of
# x & tx and y & ty respectively.
dp[1][0] = 3;
dp[0][1] = 3;
dp[1][1] = 2;
dp[2][0] = 2;
dp[0][2] = 2;
dp[2][1] = 1;
dp[1][2] = 1;
ans = getsteps(x, y, tx, ty);
return ans
for (y, row) in enumerate(dp):
for (x, value) in enumerate(row):
dp[y][x] = (stepsToPoint(x+1,n2-y))
for (i,row) in enumerate(dp):
for (x, number) in enumerate(row):
if x==n2-1:
print(number, end="\n")
else:
print(number, end=" ")

Test details

Test 1

Group: 1, 2, 3

Verdict:

input
4

correct output
0 3 2 5 
3 4 1 2 
2 1 4 3 
5 2 3 2 

user output
[[0, 0, 0, 0], [0, 0, 0, 0], [...

Test 2

Group: 1, 2, 3

Verdict:

input
5

correct output
0 3 2 3 2 
3 4 1 2 3 
2 1 4 3 2 
3 2 3 2 3 
2 3 2 3 4 

user output
[[0, 0, 0, 0, 0], [0, 0, 0, 0,...
Truncated

Test 3

Group: 1, 2, 3

Verdict:

input
6

correct output
0 3 2 3 2 3 
3 4 1 2 3 4 
2 1 4 3 2 3 
3 2 3 2 3 4 
2 3 2 3 4 3 
...

user output
[[0, 0, 0, 0, 0, 0], [0, 0, 0,...
Truncated

Test 4

Group: 1, 2, 3

Verdict:

input
7

correct output
0 3 2 3 2 3 4 
3 4 1 2 3 4 3 
2 1 4 3 2 3 4 
3 2 3 2 3 4 3 
2 3 2 3 4 3 4 
...

user output
[[0, 0, 0, 0, 0, 0, 0], [0, 0,...
Truncated

Test 5

Group: 1, 2, 3

Verdict:

input
8

correct output
0 3 2 3 2 3 4 5 
3 4 1 2 3 4 3 4 
2 1 4 3 2 3 4 5 
3 2 3 2 3 4 3 4 
2 3 2 3 4 3 4 5 
...

user output
[[0, 0, 0, 0, 0, 0, 0, 0], [0,...
Truncated

Test 6

Group: 1, 2, 3

Verdict:

input
9

correct output
0 3 2 3 2 3 4 5 4 
3 4 1 2 3 4 3 4 5 
2 1 4 3 2 3 4 5 4 
3 2 3 2 3 4 3 4 5 
2 3 2 3 4 3 4 5 4 
...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0], ...
Truncated

Test 7

Group: 1, 2, 3

Verdict:

input
10

correct output
0 3 2 3 2 3 4 5 4 5 
3 4 1 2 3 4 3 4 5 6 
2 1 4 3 2 3 4 5 4 5 
3 2 3 2 3 4 3 4 5 6 
2 3 2 3 4 3 4 5 4 5 
...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 8

Group: 2, 3

Verdict:

input
25

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 9

Group: 2, 3

Verdict:

input
49

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 10

Group: 2, 3

Verdict:

input
50

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 11

Group: 3

Verdict:

input
75

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 12

Group: 3

Verdict:

input
99

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated

Test 13

Group: 3

Verdict:

input
100

correct output
0 3 2 3 2 3 4 5 4 5 6 7 6 7 8 ...

user output
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
Truncated