CSES - Datatähti 2018 alku - Results
Submission details
Task:Fraktaali
Sender:Yytsi
Submission time:2017-10-12 14:50:41 +0300
Language:Python3
Status:READY
Result:100
Feedback
groupverdictscore
#1ACCEPTED10
#2ACCEPTED10
#3ACCEPTED10
#4ACCEPTED10
#5ACCEPTED10
#6ACCEPTED10
#7ACCEPTED10
#8ACCEPTED10
#9ACCEPTED10
#10ACCEPTED10
Test results
testverdicttimegroup
#1ACCEPTED0.10 s1details
#2ACCEPTED0.08 s2details
#3ACCEPTED0.07 s3details
#4ACCEPTED0.08 s4details
#5ACCEPTED0.08 s5details
#6ACCEPTED0.09 s6details
#7ACCEPTED0.08 s7details
#8ACCEPTED0.11 s8details
#9ACCEPTED0.23 s9details
#10ACCEPTED0.72 s10details

Code

"""
Written by, Tuukka Yildirim.
input: n -> [1, 10]
Things I know right off the getgo.
Area of the fractal = 4 ** (n - 1)
Side length of the fractal = sqrt(4 ** (n - 1)), where ** denotes exponentiation.
The solution used here is recursive. The fractal matrix that is manipulated
consists of boolean values. I found it easier to hold the matrix in a 1D list.
The idea for F(n) is to return a 1D list of boolean values that represent
# and . accordingly [true -> #, false -> .] Also, the list should be
in a form, such that the fractal lines can be easily decoded by reading
lines of the length sqrt(4 ** (n - 1)). This turned out to be a problem,
that I solved with some math that can be found at F.
At the end, we just slice the list to form the fractal.
"""
def reverseBlock(arr):
return [not val for val in arr]
from collections import Iterable
def flatten(items):
"""Yield items from any nested iterable."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def F(n):
if n == 1: return [True]
elif n == 2: return [True, True, True, False]
else:
block = F(n - 1)
grid = list(flatten([block, block, block, reverseBlock(block)]))
#print(grid)
blocks = []
area = 4 ** (n - 1)
subArea = area // 4
side = int(area ** 0.5)
for y in range(side):
# Every row has 2 sides.
# LLLL | PPPP
# LLLL | PPPP
# EEEE | IIII
# EEEE | IIII
halfWay = (side // 2)
if y < halfWay:
# Upper region
for x in range(side):
realX = x % halfWay
if x < halfWay:
# Upper left
blocks.append(grid[y * halfWay + x])
else:
# Upper right
blocks.append(grid[subArea + y * halfWay + realX])
else:
# Lower region
realY = y % halfWay
for x in range(side):
realX = x % halfWay
if x < halfWay:
# Lower left
blocks.append(grid[2 * subArea + realY * halfWay + x])
else:
# Lower right
blocks.append(grid[3 * subArea + realY * halfWay + realX])
return blocks
n = int(input())
grid = F(n)
area = 4 ** (n - 1)
subArea = area // 4
side = int(area ** 0.5)
lines = ""
for i in range(side):
cutStart = i * side
cutEnd = cutStart + side
slice = grid[cutStart : cutEnd]
print("".join([".#"[val] for val in slice]))

Test details

Test 1

Group: 1

Verdict: ACCEPTED

input
1

correct output
#

user output
#

Test 2

Group: 2

Verdict: ACCEPTED

input
2

correct output
##
#.

user output
##
#.

Test 3

Group: 3

Verdict: ACCEPTED

input
3

correct output
####
#.#.
##..
#..#

user output
####
#.#.
##..
#..#

Test 4

Group: 4

Verdict: ACCEPTED

input
4

correct output
########
#.#.#.#.
##..##..
#..##..#
####....
...

user output
########
#.#.#.#.
##..##..
#..##..#
####....
...

Test 5

Group: 5

Verdict: ACCEPTED

input
5

correct output
################
#.#.#.#.#.#.#.#.
##..##..##..##..
#..##..##..##..#
####....####....
...

user output
################
#.#.#.#.#.#.#.#.
##..##..##..##..
#..##..##..##..#
####....####....
...

Test 6

Group: 6

Verdict: ACCEPTED

input
6

correct output
##############################...

user output
##############################...

Test 7

Group: 7

Verdict: ACCEPTED

input
7

correct output
##############################...

user output
##############################...

Test 8

Group: 8

Verdict: ACCEPTED

input
8

correct output
##############################...

user output
##############################...

Test 9

Group: 9

Verdict: ACCEPTED

input
9

correct output
##############################...

user output
##############################...

Test 10

Group: 10

Verdict: ACCEPTED

input
10

correct output
##############################...

user output
##############################...