# Checking if it is one should be made more efficient, maybe by keeping track of it is one every time a change to V is made? only needs to be done on division INCREASE T # 2 INCREASE T REPEAT X TIMES ( INCREASE V ) INCREASE E # Later should be replaced with 1000 INCREASE E INCREASE E INCREASE E INCREASE E INCREASE E INCREASE E INCREASE E INCREASE E INCREASE E INCREASE Q # Make sure first time runs REPEAT E TIMES ( REPEAT Q TIMES ( CLEAR A INCREASE A CLEAR B CLEAR C # Check for divisible by 2, output to X and Y REPEAT V TIMES ( REPEAT A TIMES ( CLEAR A INCREASE B INCREASE X CLEAR Y ) REPEAT C TIMES ( CLEAR C INCREASE A CLEAR X INCREASE Y ) REPEAT B TIMES ( CLEAR B INCREASE C ) ) #PRINT X #PRINT Y REPEAT X TIMES ( # pariton, V = 3*V REPEAT V TIMES ( REPEAT T TIMES ( INCREASE V ) ) INCREASE V ) REPEAT Y TIMES ( # parillinen, J = V/2 CLEAR J REPEAT V TIMES ( REPEAT A TIMES ( CLEAR A INCREASE B INCREASE J ) REPEAT C TIMES ( CLEAR C INCREASE A ) REPEAT B TIMES ( CLEAR B INCREASE C ) ) CLEAR V REPEAT J TIMES ( INCREASE V ) ) #PRINT V # Check if it is one, output to Q = 1, if V > 1 CLEAR O CLEAR U INCREASE U REPEAT V TIMES ( REPEAT O TIMES ( # Runs on second ( V > 1 ), sets Q = 1 CLEAR O INCREASE Q ) REPEAT U TIMES ( # Runs on first CLEAR Q INCREASE O CLEAR U ) ) PRINT V ) )