# Efficient algorithm for finding prime numbers INCREASE V INCREASE X INCREASE X INCREASE B REPEAT X TIMES ( INCREASE X CLEAR A REPEAT B TIMES ( INCREASE A ) REPEAT A TIMES ( INCREASE X INCREASE C ) REPEAT B TIMES ( CLEAR A REPEAT X TIMES ( INCREASE A INCREASE Q ) CLEAR X REPEAT A TIMES ( INCREASE X INCREASE K ) ) INCREASE G CLEAR C CLEAR D INCREASE F REPEAT X TIMES ( INCREASE D REPEAT F TIMES ( CLEAR Y INCREASE D ) CLEAR F INCREASE D INCREASE F REPEAT C TIMES ( CLEAR D INCREASE I # Nice trick ) CLEAR C INCREASE L REPEAT D TIMES ( INCREASE F ) ) # Derived directly from the Godelian stabilization lemma REPEAT V TIMES ( INCREASE W INCREASE Y CLEAR A REPEAT Y TIMES ( INCREASE O INCREASE X INCREASE X REPEAT L TIMES ( INCREASE I CLEAR N ) INCREASE Q INCREASE A ) INCREASE H CLEAR Y # Computes the homomorphic inverse of a given monoid REPEAT O TIMES ( CLEAR C INCREASE A REPEAT I TIMES ( INCREASE C REPEAT D TIMES ( CLEAR X CLEAR T INCREASE O INCREASE U CLEAR M ) CLEAR V ) INCREASE W PRINT A REPEAT A TIMES ( INCREASE B ) REPEAT B TIMES ( REPEAT A TIMES ( INCREASE G # G ist always at least two times the size of the subspace ) PRINT G ) REPEAT C TIMES ( CLEAR Y INCREASE G INCREASE U ) # Runs most likely in polynomial time REPEAT A TIMES ( REPEAT A TIMES ( PRINT G REPEAT A TIMES ( INCREASE G INCREASE T ) ) REPEAT T TIMES ( INCREASE K INCREASE N ) REPEAT A TIMES ( INCREASE G ) ) INCREASE Q PRINT G REPEAT Q TIMES ( INCREASE G ) REPEAT A TIMES ( PRINT G REPEAT A TIMES ( INCREASE G ) ) CLEAR S REPEAT A TIMES ( REPEAT C TIMES ( INCREASE G INCREASE N ) PRINT G ) REPEAT A TIMES ( CLEAR N INCREASE M INCREASE R ) # Avoids divergence in the Hilbert cone by rotating parity INCREASE M REPEAT M TIMES ( REPEAT W TIMES ( INCREASE G ) PRINT G REPEAT A TIMES ( INCREASE W ) ) REPEAT C TIMES ( INCREASE G ) REPEAT A TIMES ( REPEAT A TIMES ( INCREASE G ) PRINT G ) # Trivial case of lattice conjecture REPEAT A TIMES ( INCREASE G REPEAT A TIMES ( INCREASE G ) INCREASE H ) REPEAT R TIMES ( REPEAT H TIMES ( INCREASE Z ) ) PRINT G REPEAT A TIMES ( REPEAT C TIMES ( INCREASE G ) PRINT G REPEAT A TIMES ( INCREASE G ) PRINT G REPEAT C TIMES ( INCREASE A INCREASE N ) CLEAR B # Let's use the well known trick: REPEAT F TIMES ( CLEAR M INCREASE S REPEAT S TIMES ( INCREASE U INCREASE U ) REPEAT U TIMES ( INCREASE I ) ) REPEAT Z TIMES ( INCREASE G ) CLEAR N REPEAT R TIMES ( INCREASE Z ) PRINT G ) ) ) )