['# Efficient algorithm for finding prime numbers', 'INCREASE V', 'INCREASE X', 'INCREASE X', 'INCREASE B', 'REPEAT X TIMES (', ' INCREASE X', ' CLEAR A', ' REPEAT B TIMES (', ' INCREASE A', ' )', ' REPEAT A TIMES (', ' INCREASE X', ' INCREASE C', ' )', '', ' REPEAT B TIMES (', ' CLEAR A', ' REPEAT X TIMES (', ' INCREASE A', ' INCREASE Q', ' )', ' CLEAR X', ' REPEAT A TIMES (', ' INCREASE X', ' INCREASE K', ' )', ' )', ' INCREASE G', ' CLEAR C', ' CLEAR D ', ' INCREASE F', ' REPEAT X TIMES (', ' INCREASE D', ' REPEAT F TIMES (', ' CLEAR Y', ' INCREASE D', ' )', ' CLEAR F', ' INCREASE D', ' INCREASE F', ' REPEAT C TIMES (', ' CLEAR D ', ' INCREASE I # Nice trick', ' )', ' CLEAR C', ' INCREASE L', ' REPEAT D TIMES (', ' INCREASE F', ' )', ' )', ' # Derived directly from the Godelian stabilization lemma', ' REPEAT V TIMES (', ' INCREASE W', ' INCREASE Y', ' CLEAR A', ' REPEAT Y TIMES (', ' INCREASE O', ' INCREASE X', ' INCREASE X', ' REPEAT L TIMES (', ' INCREASE I', ' CLEAR N', ' )', ' INCREASE Q', ' INCREASE A', ' )', ' INCREASE H', ' CLEAR Y', ' # Computes the homomorphic inverse of a given monoid', ' REPEAT O TIMES (', ' CLEAR C', ' INCREASE A', ' REPEAT I TIMES (', ' INCREASE C', ' REPEAT D TIMES (', ' CLEAR X', ' CLEAR T', ' INCREASE O', ' INCREASE U', ' CLEAR M', ' )', ' CLEAR V', ' )', ' INCREASE W', ' PRINT A', ' REPEAT A TIMES (', ' INCREASE B', ' )', ' REPEAT B TIMES (', ' REPEAT A TIMES (', ' INCREASE G # G ist always at least two times the size of the subspace', ' )', ' PRINT G', ' )', ' REPEAT C TIMES (', ' CLEAR Y', ' INCREASE G', ' INCREASE U', ' )', ' # Runs most likely in polynomial time', ' REPEAT A TIMES (', ' REPEAT A TIMES (', ' PRINT G', ' REPEAT A TIMES (', ' INCREASE G', ' INCREASE T', ' )', ' )', ' REPEAT T TIMES (', ' INCREASE K', ' INCREASE N', ' )', ' REPEAT A TIMES (', ' INCREASE G', ' )', ' )', ' INCREASE Q', ' PRINT G', ' REPEAT Q TIMES (', ' INCREASE G', ' )', ' REPEAT A TIMES (', ' PRINT G', ' REPEAT A TIMES (', ' INCREASE G', ' )', ' )', ' CLEAR S', ' REPEAT A TIMES (', ' REPEAT C TIMES (', ' INCREASE G', ' INCREASE N', ' )', ' PRINT G', ' )', ' REPEAT A TIMES (', ' CLEAR N', ' INCREASE M', ' INCREASE R', ' )', ' # Avoids divergence in the Hilbert cone by rotating parity', ' INCREASE M', ' REPEAT M TIMES (', ' REPEAT W TIMES (', ' INCREASE G', ' )', ' PRINT G', ' REPEAT A TIMES (', ' INCREASE W', ' )', ' )', ' REPEAT C TIMES (', ' INCREASE G', ' )', ' REPEAT A TIMES (', ' REPEAT A TIMES (', ' INCREASE G', ' )', ' PRINT G', ' )', ' # Trivial case of lattice conjecture', ' REPEAT A TIMES (', ' INCREASE G', ' REPEAT A TIMES (', ' INCREASE G', ' )', ' INCREASE H', ' )', ' REPEAT R TIMES (', ' REPEAT H TIMES (', ' INCREASE Z', ' )', ' )', ' PRINT G', ' REPEAT A TIMES (', ' REPEAT C TIMES (', ' INCREASE G', ' )', ' PRINT G', ' REPEAT A TIMES (', ' INCREASE G', ' )', ' PRINT G', ' REPEAT C TIMES (', ' INCREASE A', ' INCREASE N', ' )', ' CLEAR B', " # Let's use the well known trick:", ' REPEAT F TIMES (', ' CLEAR M', ' INCREASE S', ' REPEAT S TIMES (', ' INCREASE U', ' INCREASE U', ' )', ' REPEAT U TIMES (', ' INCREASE I', ' )', ' )', ' REPEAT Z TIMES (', ' INCREASE G', ' )', ' CLEAR N', ' REPEAT R TIMES (', ' INCREASE Z', ' )', ' PRINT G', ' )', ' )', ' )', ')'] # Efficient algorithm for finding prime numbersINCREASE VINCREASE XINCREASE XINCREASE BREPEAT X TIMES ( INCREASE X CLEAR A REPEAT B TIMES ( INCREASE A ) REPEAT A TIMES ( INCREASE X INCREASE C ) REPEAT B TIMES ( CLEAR A REPEAT X TIMES ( INCREASE A INCREASE Q ) CLEAR X REPEAT A TIMES ( INCREASE X INCREASE K ) ) INCREASE G CLEAR C CLEAR D INCREASE F REPEAT X TIMES ( INCREASE D REPEAT F TIMES ( CLEAR Y INCREASE D ) CLEAR F INCREASE D INCREASE F REPEAT C TIMES ( CLEAR D INCREASE I # Nice trick ) CLEAR C INCREASE L REPEAT D TIMES ( INCREASE F ) ) # Derived directly from the Godelian stabilization lemma REPEAT V TIMES ( INCREASE W INCREASE Y CLEAR A REPEAT Y TIMES ( INCREASE O INCREASE X INCREASE X REPEAT L TIMES ( INCREASE I CLEAR N ) INCREASE Q INCREASE A ) INCREASE H CLEAR Y # Computes the homomorphic inverse of a given monoid REPEAT O TIMES ( CLEAR C INCREASE A REPEAT I TIMES ( INCREASE C REPEAT D TIMES ( CLEAR X CLEAR T INCREASE O INCREASE U CLEAR M ) CLEAR V ) INCREASE W PRINT A REPEAT A TIMES ( INCREASE B ) REPEAT B TIMES ( REPEAT A TIMES ( INCREASE G # G ist always at least two times the size of the subspace ) PRINT G ) REPEAT C TIMES ( CLEAR Y INCREASE G INCREASE U ) # Runs most likely in polynomial time REPEAT A TIMES ( REPEAT A TIMES ( PRINT G REPEAT A TIMES ( INCREASE G INCREASE T ) ) REPEAT T TIMES ( INCREASE K INCREASE N ) REPEAT A TIMES ( INCREASE G ) ) INCREASE Q PRINT G REPEAT Q TIMES ( INCREASE G ) REPEAT A TIMES ( PRINT G REPEAT A TIMES ( INCREASE G ) ) CLEAR S REPEAT A TIMES ( REPEAT C TIMES ( INCREASE G INCREASE N ) PRINT G ) REPEAT A TIMES ( CLEAR N INCREASE M INCREASE R ) # Avoids divergence in the Hilbert cone by rotating parity INCREASE M REPEAT M TIMES ( REPEAT W TIMES ( INCREASE G ) PRINT G REPEAT A TIMES ( INCREASE W ) ) REPEAT C TIMES ( INCREASE G ) REPEAT A TIMES ( REPEAT A TIMES ( INCREASE G ) PRINT G ) # Trivial case of lattice conjecture REPEAT A TIMES ( INCREASE G REPEAT A TIMES ( INCREASE G ) INCREASE H ) REPEAT R TIMES ( REPEAT H TIMES ( INCREASE Z ) ) PRINT G REPEAT A TIMES ( REPEAT C TIMES ( INCREASE G ) PRINT G REPEAT A TIMES ( INCREASE G ) PRINT G REPEAT C TIMES ( INCREASE A INCREASE N ) CLEAR B # Let's use the well known trick: REPEAT F TIMES ( CLEAR M INCREASE S REPEAT S TIMES ( INCREASE U INCREASE U ) REPEAT U TIMES ( INCREASE I ) ) REPEAT Z TIMES ( INCREASE G ) CLEAR N REPEAT R TIMES ( INCREASE Z ) PRINT G ) ) ))