CSES - Shared codeLink to this code:
https://cses.fi/paste/488842243370b704a7b5e8/
import sys,math,random
from heapq import heappush,heappop
from bisect import bisect_right,bisect_left
from collections import Counter,deque,defaultdict
from itertools import permutations
# functions #
MOD = 998244353
MOD = 10**9 + 7
RANDOM = random.randrange(2**62)
def gcd(a,b):
if a%b==0:
return b
else:
return gcd(b,a%b)
def lcm(a,b):
return a//gcd(a,b)*b
def w(x):
return x ^ RANDOM
##
#String hashing : sh, fenwick sortedlist : fsortl, Number : numtheory, SparseTable : SparseTable
#bucket sorted list : bsortl, segment tree(lazy propogation) : SegmentTree, bootstrap : bootstrap
#binary indexed tree : BIT, segment tree(point updates) : SegmentPoint, Convex Hull : hull
#Combinatorics : pnc, Diophantine Equations : dpheq
#Template : https://github.com/OmAmar106/Template-for-Competetive-Programming
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedList(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
return self.index_right(x) - self.index(x)
def insert(self, x: T) -> None:
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def remove(self, x: T) -> bool:
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
def find_closest(self, k: T) -> Optional[T]:
if self.size == 0:
return None
ltk = self.le(k)
gtk = self.ge(k)
if ltk is None:
return gtk
if gtk is None:
return ltk
if abs(k-ltk)<=abs(k-gtk):
return ltk
else:
return gtk
def solve():
L = list(map(int, sys.stdin.readline().split()))
L1 = list(map(int, sys.stdin.readline().split()))
L2 = list(map(int, sys.stdin.readline().split()))
sl = SortedList(L1)
for i in range(len(L2)):
y = sl.le(L2[i])
if not y:
print(-1)
continue
print(y)
sl.remove(y)
#st = sys.stdin.readline().strip()
solve()