
1	/	4

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-2	tasks

gondola
Language:	en-ISC

Gondola
Mao-Kong	Gondola	is	a	famous	attraction	in	Taipei.	The	gondola	system	consists	of	a	circular	rail,	a
single	station,	and	 	gondolas	numbered	consecutively	from	1	to	 	running	around	the	rail	in	a	fixed
direction.	After	gondola	 	passes	the	station,	the	next	gondola	to	pass	the	station	will	be	gondola	
if	 ,	or	gondola	1	if	 .

Gondolas	may	break	down.	Luckily	we	have	an	infinite	supply	of	spare	gondolas,	which	are	numbered	
,	 ,	and	so	on.	When	a	gondola	breaks	down	we	replace	it	(in	the	same	position	on	the

track)	with	the	first	available	spare	gondola,	that	is,	the	one	with	the	lowest	number.	For	example,	if
there	are	five	gondolas	and	gondola	1	breaks	down,	then	we	will	replace	it	with	gondola	6.

You	like	to	stand	at	the	station	and	watch	the	gondolas	as	they	pass	by.	A	gondola	sequence	is	a
sequence	of	 	numbers	of	gondolas	that	pass	the	station.	It	is	possible	that	one	or	more	gondolas
broke	down	(and	were	replaced)	before	you	arrived,	but	none	of	the	gondolas	break	down	while	you
are	watching.

Note	that	the	same	configuration	of	gondolas	on	the	rail	can	give	multiple	gondola	sequences,
depending	on	which	gondola	passes	first	when	you	arrive	at	the	station.	For	example,	if	none	of	the
gondolas	have	broken	down	then	both	(2,	3,	4,	5,	1)	and	(4,	5,	1,	2,	3)	are	possible	gondola	sequences,
but	(4,	3,	2,	5,	1)	is	not	(because	the	gondolas	appear	in	the	wrong	order).

If	gondola	1	breaks	down,	then	we	might	now	observe	the	gondola	sequence	(4,	5,	6,	2,	3).	If	gondola
4	breaks	down	next,	we	replace	it	with	gondola	7	and	we	might	observe	the	gondola	sequence	(6,	2,	3,
7,	5).	If	gondola	7	breaks	down	after	this,	we	replace	it	with	gondola	8	and	we	may	now	observe	the
gondola	sequence	(3,	8,	5,	6,	2).

broken	gondola new	gondola possible	gondola	sequence
1 6 (4,	5,	6,	2,	3)
4 7 (6,	2,	3,	7,	5)
7 8 (3,	8,	5,	6,	2)

A	replacement	sequence	is	a	sequence	consisting	of	the	numbers	of	the	gondolas	that	have	broken
down,	in	the	order	in	which	they	break	down.	In	the	previous	example	the	replacement	sequence	is	(1,
4,	7).	A	replacement	sequence	 	produces	a	gondola	sequence	 	if,	after	gondolas	break	down
according	to	the	replacement	sequence	 ,	the	gondola	sequence	 	may	be	observed.

Gondola	Sequence	Checking
In	the	first	three	subtasks	you	must	check	whether	an	input	sequence	is	a	gondola	sequence.	See	the
table	below	for	examples	of	sequences	that	are	and	are	not	gondola	sequences.	You	need	to
implement	a	function	valid.

2	/	4

valid(n,	inputSeq)
n:	the	length	of	the	input	sequence.
inputSeq:	array	of	length	 ;	inputSeq[i]	is	element	 	of	the	input	sequence,	for	

.

The	function	should	return	1	if	the	input	sequence	is	a	gondola	sequence,	or	0	otherwise.

Subtasks	1,	2,	3

subtask points inputSeq
1 5 has	each	number	from	1	to	 	exactly	once
2 5 	inputSeq[i]	
3 10 	inputSeq[i]	

Examples

subtask inputSeq return	value note
1 (1,	2,	3,	4,	5,	6,	7) 1
1 (3,	4,	5,	6,	1,	2) 1
1 (1,	5,	3,	4,	2,	7,	6) 0 1	cannot	appear	just	before	5
1 (4,	3,	2,	1) 0 4	cannot	appear	just	before	3
2 (1,	2,	3,	4,	5,	6,	5) 0 two	gondolas	numbered	5
3 (2,	3,	4,	9,	6,	7,	1) 1 replacement	sequence	(5,	8)
3 (10,	4,	3,	11,	12) 0 4	cannot	appear	just	before	3

Replacement	Sequence
In	the	next	three	subtasks	you	must	construct	a	possible	replacement	sequence	that	produces	a	given
gondola	sequence.	Any	such	replacement	sequence	will	be	accepted.	You	need	to	implement	a
function	replacement.

replacement(n,	gondolaSeq,	replacementSeq)
n	is	the	length	of	the	gondola	sequence.
gondolaSeq:	array	of	length	 ;	gondolaSeq	is	guaranteed	to	be	a	gondola	sequence,
and	gondolaSeq[i]	is	element	 	of	the	sequence,	for	 .

The	function	should	return	 ,	the	length	of	the	replacement	sequence.

replacementSeq:	array	that	is	sufficiently	large	to	store	the	replacement	sequence;	you
should	return	your	sequence	by	placing	element	 	of	your	replacement	sequence	into

3	/	4

replacementSeq[i],	for	 .

Subtasks	4,	5,	6

subtask points gondolaSeq
4 5 	gondolaSeq[i]	
5 10 	gondolaSeq[i]	
6 20 	gondolaSeq[i]	

Examples

subtask gondolaSeq return	value replacementSeq
4 (3,	1,	4) 1 (2)
4 (5,	1,	2,	3,	4) 0 ()
5 (2,	3,	4,	9,	6,	7,	1) 2 (5,	8)

Count	Replacement	Sequences
In	the	next	four	subtasks	you	must	count	the	number	of	possible	replacement	sequences	that	produce
a	given	sequence	(which	may	or	may	not	be	a	gondola	sequence),	modulo	1,000,000,009.	You	need
to	implement	a	function	countReplacement.

countReplacement(n,	inputSeq)
n:	the	length	of	the	input	sequence.
inputSeq:	array	of	length	 ;	inputSeq[i]	is	element	 	of	the	input	sequence,	for	

.

If	the	input	sequence	is	a	gondola	sequence,	then	count	the	number	of	replacement
sequences	that	produce	this	gondola	sequence	(which	could	be	extremely	large),	and
return	this	number	modulo	1,000,000,009.	If	the	input	sequence	is	not	a	gondola
sequence,	the	function	should	return	0.	If	the	input	sequence	is	a	gondola	sequence	but	no
gondolas	broke	down,	the	function	should	return	1.

Subtasks	7,	8,	9,	10

subtask points inputSeq
7 5 	inputSeq[i]	

8 15 	inputSeq[i]	 ,	and	at	least	 	of	the	initial	gondolas
	did	not	break	down.

9 15 	inputSeq[i]	
10 10 	inputSeq[i]	

4	/	4

Examples

subtask inputSeq return	value replacement	sequence
7 (1,	2,	7,	6) 2 (3,	4,	5)	or	(4,	5,	3)
8 (2,	3,	4,	12,	6,	7,	1) 1 (5,	8,	9,	10,	11)
9 (4,	7,	4,	7) 0 inputSeq	is	not	a	gondola	sequence
10 (3,	4) 2 (1,	2)	or	(2,	1)

Implementation	details
You	have	to	submit	exactly	one	file,	called	gondola.c,	gondola.cpp	or	gondola.pas.	This	file
should	implement	all	three	subprograms	described	above	(even	if	you	only	plan	to	solve	some	of	the
subtasks),	using	the	following	signatures.	You	also	need	to	include	a	header	file	gondola.h	for
C/C++	implementation.

C/C++	programs

int	valid(int	n,	int	inputSeq[]);
int	replacement(int	n,	int	gondolaSeq[],	int	replacementSeq[]);
int	countReplacement(int	n,	int	inputSeq[]);

Pascal	programs

function	valid(n:	longint;	inputSeq:	array	of	longint):	integer;
function	replacement(n:	longint;	gondolaSeq:	array	of	longint;
var	replacementSeq:	array	of	longint):	longint;
function	countReplacement(n:	longint;	inputSeq:	array	of	longint):
longint;

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	T,	the	subtask	number	your	program	intends	to	solve	().

line	2:	n,	the	length	of	the	input	sequence.
line	3:	If	T	is	4,	5,	or	6,	this	line	contains	gondolaSeq[0],	...,	gondolaSeq[n-1].	Otherwise
this	line	contains	inputSeq[0],	...,	inputSeq[n-1].

1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-2	tasks

friend
Language:	en-ISC

Friend
We	build	a	social	network	from	 	people	numbered	0,	...	,	 .	Some	pairs	of	people	in	the	network
will	be	friends.	If	person	 	becomes	a	friend	of	person	 ,	then	person	 	also	becomes	a	friend	of
person	 .

The	people	are	added	to	the	network	in	 	stages,	which	are	also	numbered	from	 	to	 .	Person	
is	added	in	stage	 .	In	stage	0,	person	0	is	added	as	the	only	person	of	the	network.	In	each	of	the	next

	stages,	a	person	is	added	to	the	network	by	a	host,	who	may	be	any	person	already	in	the
network.	At	stage	 	(),	the	host	for	that	stage	can	add	the	incoming	person	 	into	the
network	by	one	of	the	following	three	protocols:

IAmYourFriend	makes	person	 	a	friend	of	the	host	only.

MyFriendsAreYourFriends	makes	person	 	a	friend	of	each	person,	who	is	a	friend	of	the	host
at	this	moment.	Note	that	this	protocol	does	not	make	person	 	a	friend	of	the	host.

WeAreYourFriends	makes	person	 	a	friend	of	the	host,	and	also	a	friend	of	each	person,	who
is	a	friend	of	the	host	at	this	moment.

After	we	build	the	network	we	would	like	to	pick	a	sample	for	a	survey,	that	is,	choose	a	group	of
people	from	the	network.	Since	friends	usually	have	similar	interests,	the	sample	should	not	include
any	pair	of	people	who	are	friends	with	each	other.	Each	person	has	a	survey	confidence,	expressed
as	a	positive	integer,	and	we	would	like	to	find	a	sample	with	the	maximum	total	confidence.

Example

stage host protocol friend	relations	added
1 0 IAmYourFriend (1,	0)
2 0 MyFriendsAreYourFriends (2,	1)
3 1 WeAreYourFriends (3,	1),	(3,	0),	(3,	2)
4 2 MyFriendsAreYourFriends (4,	1),	(4,	3)
5 0 IAmYourFriend (5,	0)

Initially	the	network	contains	only	person	0.	The	host	of	stage	1	(person	0)	invites	the	new	person	1
through	the	IAmYourFriend	protocol,	hence	they	become	friends.	The	host	of	stage	2	(person	0	again)
invites	person	2	by	MyFriendsAreYourFriends,	which	makes	person	1	(the	only	friend	of	the	host)	the
only	friend	of	person	2.	The	host	of	stage	3	(person	1)	adds	person	3	through	WeAreYourFriends,
which	makes	person	3	a	friend	of	person	1	(the	host)	and	people	0	and	2	(the	friends	of	the	host).
Stages	4	and	5	are	also	shown	in	the	table	above.	The	final	network	is	shown	in	the	following	figure,	in
which	the	numbers	inside	the	circles	show	the	labels	of	people,	and	the	numbers	next	to	the	circles
show	the	survey	confidence.	The	sample	consisting	of	people	3	and	5	has	total	survey	confidence
equal	to	20	+	15	=	35,	which	is	the	maximum	possible	total	confidence.

2	/	3

Task
Given	the	description	of	each	stage	and	the	confidence	value	of	each	person,	find	a	sample	with	the
maximum	total	confidence.	You	only	need	to	implement	the	function	findSample.

findSample(n,	confidence,	host,	protocol)
n:	the	number	of	people.
confidence:	array	of	length	 ;	confidence[i]	gives	the	confidence	value	of	person	
.

host:	array	of	length	 ;	host[i]	gives	the	host	of	stage	 .
protocol:	array	of	length	 ;	protocol[i]	gives	the	protocol	code	used	in	stage	 	(

):	0	for	IAmYourFriend,	1	for	MyFriendsAreYourFriends,	and	2	for
WeAreYourFriends.

Since	there	is	no	host	in	stage	0,	host[0]	and	protocol[0]	are	undefined	and	should
not	be	accessed	by	your	program.

The	function	should	return	the	maximum	possible	total	confidence	of	a	sample.

Subtasks
Some	subtasks	use	only	a	subset	of	protocols,	as	shown	in	the	following	table.

subtask points confidence protocols	used
1 11 All	three	protocols

2 8 Only
MyFriendsAreYourFriends

3 8 Only	WeAreYourFriends
4 19 Only	IAmYourFriend

5 23 All	confidence	values	are	1
Both
MyFriendsAreYourFriends	and
IAmYourFriend

6 31 All	three	protocols

3	/	3

Implementation	details
You	have	to	submit	exactly	one	file,	called	friend.c,	friend.cpp	or	friend.pas.	This	file	should
implement	the	subprogram	described	above,	using	the	following	signatures.	You	also	need	to	include	a
header	file	friend.h	for	C/C++	implementation.
C/C++	program

int	findSample(int	n,	int	confidence[],	int	host[],	int	protocol[]);

Pascal	programs

function	findSample(n:	longint,	confidence:	array	of	longint,	host:	array
of	longint;	protocol:	array	of	longint):	longint;

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	n
line	2:	confidence[0],	...,	confidence[n-1]
line	3:	host[1],	protocol[1],	host[2],	protocol[2],	...,	host[n-1],	protocol[n-1]

The	sample	grader	will	print	the	return	value	of	findSample.

1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-2	tasks

holiday
Language:	en-ISC

Holiday
Jian-Jia	is	planning	his	next	holiday	in	Taiwan.	During	his	holiday,	Jian-Jia	moves	from	city	to	city	and
visits	attractions	in	the	cities.

There	are	 	cities	in	Taiwan,	all	located	along	a	single	highway.	The	cities	are	numbered
consecutively	from	0	to	 .	For	city	 ,	where	 ,	the	adjacent	cities	are	 	and	

.	The	only	city	adjacent	to	city	0	is	city	1,	and	the	only	city	adjacent	to	city	 	is	city	 .

Each	city	contains	some	number	of	attractions.	Jian-Jia	has	 	days	of	holiday	and	plans	to	visit	as
many	attractions	as	possible.	Jian-Jia	has	already	selected	a	city	in	which	to	start	his	holiday.	In	each
day	of	his	holiday	Jian-Jia	can	either	move	to	an	adjacent	city,	or	else	visit	all	the	attractions	of	the	city
he	is	staying,	but	not	both.	Jian-Jia	will	never	visit	the	attractions	in	the	same	city	twice	even	if	he
stays	in	the	city	multiple	times.	Please	help	Jian-Jia	plan	his	holiday	so	that	he	visits	as	many	different
attractions	as	possible.

Example
Suppose	Jian-Jia	has	7	days	of	holiday,	there	are	5	cities	(listed	in	the	table	below),	and	he	starts	from
city	2.	On	the	first	day	Jian-Jia	visits	the	20	attractions	in	city	2.	On	the	second	day	Jian-Jia	moves
from	city	2	to	city	3,	and	on	the	third	day	visits	the	30	attractions	in	city	3.	Jian-Jia	then	spends	the
next	three	days	moving	from	city	3	to	city	0,	and	visits	the	10	attractions	in	city	0	on	the	seventh	day.
The	total	number	of	attractions	Jian-Jia	visits	is	20	+	30	+	10	=	60,	which	is	the	maximum	number	of
attractions	Jian-Jia	can	visit	in	7	days	when	he	starts	from	city	2.

city number	of	attractions
0 10
1 2
2 20
3 30
4 1

day action
1 visit	the	attractions	in	city	2
2 move	from	city	2	to	city	3
3 visit	the	attractions	in	city	3
4 move	from	city	3	to	city	2
5 move	from	city	2	to	city	1
6 move	from	city	1	to	city	0
7 visit	the	attractions	in	city	0

2	/	3

Task
Please	implement	a	function	findMaxAttraction	that	computes	the	maximum	number	of
attractions	Jian-Jia	can	visit.

findMaxAttraction(n,	start,	d,	attraction)
n:	the	number	of	cities.

start:	the	index	of	the	starting	city.

d:	the	number	of	days.

attraction:	array	of	length	 ;	attraction[i]	is	the	number	of	attractions	in	city	 ,
for	 .

The	function	should	return	the	maximum	number	of	attractions	Jian-Jia	can	visit.

Subtasks
In	all	subtasks	 ,	and	the	number	of	attractions	in	each	city	is	nonnegative.

Additional	constraints:

subtask points maximum	number	of	attractions	in	a	city starting	city
1 7 1,000,000,000 no	constraints
2 23 100 city	0
3 17 1,000,000,000 no	constraints
4 53 1,000,000,000 no	constraints

Implementation	details
You	have	to	submit	exactly	one	file,	called	holiday.c,	holiday.cpp	or	holiday.pas.	This	file
should	implement	the	subprogram	described	above	using	the	following	signatures.	You	also	need	to
include	a	header	file	holiday.h	for	C/C++	implementation.

Note	that	the	result	may	be	large,	and	the	return	type	of	findMaxAttraction	is	a	64-bit	integer.

C/C++	program

long	long	int	findMaxAttraction(int	n,	int	start,	int	d,
int	attraction[]);

Pascal	program

function	findMaxAttraction(n,	start,	d	:	longint;
attraction	:	array	of	longint):	int64;

3	/	3

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	n,	start,	d.

line	2:	attraction[0],	...,	attraction[n-1].

The	sample	grader	will	print	the	return	value	of	findMaxAttraction.

