
1	/	2

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day1_1

moleculesmolecules
Country:	api	-	ISC

Detecting	Molecules
Petr	is	working	for	a	company	that	has	built	a	machine	for	detecting	molecules.	Each
molecule	has	a	positive	integer	weight.	The	machine	has	a	detection	range	 ,
where	 	and	 	are	positive	integers.	The	machine	can	detect	a	set	of	molecules	if
and	only	if	this	set	contains	a	subset	of	the	molecules	with	total	weight	belonging	to
the	machine's	detection	range.

Formally,	consider	 	molecules	with	weights	 .	The	detection	is
successful	if	there	is	a	set	of	distinct	indices	 	such	that	

.

Due	to	specifics	of	the	machine,	the	gap	between	 	and	 	is	guaranteed	to	be
greater	than	or	equal	to	the	weight	gap	between	the	heaviest	and	the	lightest
molecule.	Formally,	 ,	where	
and	 .

Your	task	is	to	write	a	program	which	either	finds	any	one	subset	of	molecules	with
total	weight	within	the	detection	range,	or	determines	that	there	is	no	such	subset.

Implementation	details
You	should	implement	one	function	(method):

int[]	find_subset(int	l,	int	u,	int[]	w)
l	and	u:	the	endpoints	of	the	detection	range,
w:	weights	of	the	molecules.
if	the	required	subset	exists,	the	function	should	return	an	array	of	indices
of	molecules	that	form	any	one	such	subset.	If	there	are	several	correct
answers,	return	any	of	them.
if	the	required	subset	does	not	exist,	the	function	should	return	an	empty
array.

For	the	C	language	the	function	signature	is	slightly	different:
int	find_subset(int	l,	int	u,	int[]	w,	int	n,	int[]	result)

n:	the	number	of	elements	in	w	(i.e.,	the	number	of	molecules),
the	other	parameters	are	the	same	as	above.
instead	of	returning	an	array	of	 	indices	(as	above),	the	function	should
write	the	indices	to	the	first	 	cells	of	array	result	and	then	return	 .
if	the	required	subset	does	not	exist,	the	function	should	not	write	anything
to	the	result	array	and	it	should	return	 .

Your	program	may	write	the	indices	into	the	returned	array	(or	to	the	result	array
in	C)	in	any	order.

[l, u]
l u

n , … ,w0 wn−1
I = { , … , }i1 im

l ≤ + … + ≤ uwi1 wim

l u

u − l ≥ −wmax wmin = max(, … ,)wmax w0 wn−1
= min(, … ,)wmin w0 wn−1

m
m m

0

2	/	2

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Examples

Example	1
find_subset(15,	17,	[6,	8,	8,	7])
In	this	example	we	have	four	molecules	with	weights	6,	8,	8	and	7.	The	machine	can
detect	subsets	of	molecules	with	total	weight	between	15	and	17,	inclusive.	Note,	that

.	The	total	weight	of	molecules	1	and	3	is	 ,
so	the	function	can	return	[1,	3].	Other	possible	correct	answers	are	[1,	2]
()	and	[2,	3]	().

Example	2
find_subset(14,	15,	[5,	5,	6,	6])
In	this	example	we	have	four	molecules	with	weights	5,	5,	6	and	6,	and	we	are	looking
for	a	subset	of	them	with	total	weight	between	14	and	15,	inclusive.	Again,	note	that	

.	There	is	no	subset	of	molecules	with	total	weight	between	 	and	
	so	the	function	should	return	an	empty	array.

Example	3
find_subset(10,	20,	[15,	17,	16,	18])
In	this	example	we	have	four	molecules	with	weights	15,	17,	16	and	18,	and	we	are
looking	for	a	subset	of	them	with	total	weight	between	10	and	20,	inclusive.	Again,
note	that	 .	Any	subset	consisting	of	exactly	one	element	has	total
weight	between	10	and	20,	so	the	possible	correct	answers	are:	[0],	[1],	[2]	and
[3].

Subtasks
1.	 (9	points):	 ,	 ,	 ,	all	 	are	equal.
2.	 (10	points):	 ,	 	and	

.
3.	 (12	points):	 	and	 .
4.	 (15	points):	 	and	 .
5.	 (23	points):	 	and	 .
6.	 (31	points):	 	and	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integers	 ,	 ,	 .
line	2:	 	integers:	 .

17 − 15 ≥ 8 − 6 + = 8 + 7 = 15w1 w3

+ = 8 + 8 = 16w1 w2 + = 8 + 7 = 15w2 w3

15 − 14 ≥ 6 − 5 14
15

20 − 10 ≥ 18 − 15

1 ≤ n ≤ 100 1 ≤ ≤ 100wi 1 ≤ u, l ≤ 1000 wi

1 ≤ n ≤ 100 1 ≤ , u, l ≤ 1000wi

max(, … ,) − min(, … ,) ≤ 1w0 wn−1 w0 wn−1
1 ≤ n ≤ 100 1 ≤ , u, l ≤ 1000wi

1 ≤ n ≤ 10 000 1 ≤ , u, l ≤ 10 000wi

1 ≤ n ≤ 10 000 1 ≤ , u, l ≤ 500 000wi

1 ≤ n ≤ 200 000 1 ≤ , u, l <wi 231

n l u
n , … ,w0 wn−1

1	/	2

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day1_2

railroadrailroad
Country:	api	-	ISC

Roller	Coaster	Railroad
Anna	is	working	in	an	amusement	park	and	she	is	in	charge	of	building	the	railroad
for	a	new	roller	coaster.	She	has	already	designed	 	special	sections	(conveniently
numbered	from	 	to)	that	affect	the	speed	of	a	roller	coaster	train.	She	now
has	to	put	them	together	and	propose	a	final	design	of	the	roller	coaster.	For	the
purpose	of	this	problem	you	may	assume	that	the	length	of	the	train	is	zero.

For	each	 	between	 	and	 ,	inclusive,	the	special	section	 	has	two
properties:

when	entering	the	section,	there	is	a	speed	limit:	the	speed	of	the	train	must	be
less	or	equal	to	 	km/h	(kilometers	per	hour),
when	leaving	the	section,	the	speed	of	the	train	is	exactly	 	km/h,	regardless	of
the	speed	at	which	the	train	entered	the	section.

The	finished	roller	coaster	is	a	single	railroad	line	that	contains	the	 	special	sections
in	some	order.	Each	of	the	 	sections	should	be	used	exactly	once.	Consecutive
sections	are	connected	with	tracks.	Anna	should	choose	the	order	of	the	 	sections
and	then	decide	the	lengths	of	the	tracks.	The	length	of	a	track	is	measured	in	meters
and	may	be	equal	to	any	non-negative	integer	(possibly	zero).

Each	meter	of	the	track	between	two	special	sections	slows	the	train	down	by	
km/h.	At	the	beginning	of	the	ride,	the	train	enters	the	first	special	section	in	the
order	selected	by	Anna,	going	at	 	km/h.

The	final	design	must	satisfy	the	following	requirements:
the	train	does	not	violate	any	speed	limit	when	entering	the	special	sections;
the	speed	of	the	train	is	positive	at	any	moment.

In	all	subtasks	except	subtask	3,	your	task	is	to	find	the	minimum	possible	total
length	of	tracks	between	sections.	In	subtask	3	you	only	need	to	check	whether	there
exists	a	valid	roller	coaster	design,	such	that	each	track	has	zero	length.

Implementation	details
You	should	implement	the	following	function	(method):

int64	plan_roller_coaster(int[]	s,	int[]	t).
s:	array	of	length	 ,	maximum	allowed	entry	speeds.
t:	array	of	length	 ,	exit	speeds.
In	all	subtasks	except	subtask	3,	the	function	should	return	the	minimum
possible	total	length	of	all	tracks.	In	subtask	3	the	function	should	return	
if	there	exists	a	valid	roller	coaster	design	such	that	each	track	has	zero
length,	and	any	positive	integer	if	it	does	not	exist.

n
0 n − 1

i 0 n − 1 i

si

ti

n
n

n

1

1

n
n

0

2	/	2

For	the	C	language	the	function	signature	is	slightly	different:
int64	plan_roller_coaster(int	n,	int[]	s,	int[]	t).

n:	the	number	of	elements	in	s	and	t	(i.e.,	the	number	of	special	sections),
the	other	parameters	are	the	same	as	above.

Example
plan_roller_coaster([1,	4,	5,	6],	[7,	3,	8,	6])
In	this	example	there	are	four	special	sections.	The	best	solution	is	to	build	them	in
the	order	 ,	and	to	connect	them	by	tracks	of	lengths	 	respectively.
This	is	how	a	train	travels	along	this	railroad	track:

Initially	the	speed	of	the	train	is	 	km/h.
The	train	starts	the	ride	by	entering	special	section	 .
The	train	leaves	section	 	going	at	 	km/h.
Then	there	is	a	track	of	length	 	m.	When	the	train	reaches	the	end	of	the
track,	its	speed	is	 	km/h.
The	train	enters	special	section	 	going	at	 	km/h	and	leaves	it	at	the	same
speed.
After	leaving	section	 ,	the	train	travels	along	a	 m	long	track.	Its	speed
decreases	to	 	km/h.
The	train	enters	special	section	 	going	at	 	km/h	and	leaves	it	going	at	
km/h.
Immediately	after	special	section	 	the	train	enters	special	section	 .
The	train	leaves	section	 .	Its	final	speed	is	 	km/h.

The	function	should	return	the	total	length	of	tracks	between	the	special	sections:	
.

Subtasks
In	all	subtasks	 	and	 .

1.	 (11	points):	 ,
2.	 (23	points):	 ,
3.	 (30	points):	 .	In	this	subtask	your	program	only	needs	to

check	whether	the	answer	is	zero	or	not.	If	the	answer	is	not	zero,	any	positive
integer	answer	is	considered	correct.

4.	 (36	points):	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integer	 .
line	2	+	i,	for	 	between	 	and	 :	integers	 	and	 .

0, 3, 1, 2 1, 2, 0

1
0

0 7
1

6
3 6

3 2
4

1 4 3

1 2
2 8

1 + 2 + 0 = 3

1 ≤ ≤si 109 1 ≤ ≤ti 109

2 ≤ n ≤ 8
2 ≤ n ≤ 16
2 ≤ n ≤ 200 000

2 ≤ n ≤ 200 000

n
i 0 n − 1 si ti

1	/	3

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day1_3

shortcutshortcut
Country:	api	-	ISC

Shortcut
Pavel	has	a	toy	railway.	It	is	very	simple.	There	is	a	single	main	line	consisting	of	
stations.	These	stations	are	numbered	from	 	to	 	in	order	along	the	line.	The
distance	between	the	stations	 	and	 	is	 	centimeters	().

Apart	from	the	main	line	there	may	be	some	secondary	lines.	Each	secondary	line	is	a
railway	line	between	a	station	on	the	main	line	and	a	new	station	that	does	not	lie	on
the	main	line.	(These	new	stations	are	not	numbered.)	At	most	one	secondary	line	can
start	in	each	station	of	the	main	line.	The	length	of	the	secondary	line	starting	at
station	 	is	 	centimeters.	We	use	 	to	denote	that	there	is	no	secondary	line
starting	at	station	 .

Pavel	is	now	planning	to	build	one	shortcut:	an	express	line	between	two	different
(possibly	neighbouring)	stations	of	the	main	line.	Express	line	will	have	length	of
exactly	 	centimeters,	regardless	of	what	two	stations	it	will	connect.

Each	segment	of	the	railway,	including	the	new	express	line,	can	be	used	in	both
directions.	The	distance	between	two	stations	is	the	smallest	length	of	a	route	that
goes	from	one	station	to	the	other	along	the	railways.	The	diameter	of	the	whole
railway	network	is	the	maximum	distance	among	all	pairs	of	stations.	In	other	words,
this	is	the	smallest	number	 ,	such	that	the	distance	between	every	pair	of	stations	is
at	most	 .

Pavel	wants	to	build	the	express	line	in	such	a	way	that	the	diameter	of	the	resulting
network	is	minimized.

Implementation	details

n
0 n − 1

i i + 1 li 0 ≤ i < n − 1

i di = 0di

i

c

t
t

2	/	3

You	should	implement	the	function
int64	find_shortcut(int	n,	int[]	l,	int[]	d,	int	c)

n:	number	of	stations	on	the	main	line,
l:	distances	between	stations	on	the	main	line	(array	of	length),
d:	lengths	of	secondary	lines	(array	of	length),
c:	length	of	the	new	express	line.
the	function	should	return	the	smallest	possible	diameter	of	the	railway	network
after	adding	the	express	line.

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Examples

Example	1
For	the	railway	network	shown	above,	the	grader	would	make	the	following	function
call:
find_shortcut(4,	[10,	20,	20],	[0,	40,	0,	30],	10)
The	optimal	solution	is	to	build	the	express	line	between	stations	1	and	3,	as	shown
below.

The	diameter	of	the	new	railway	network	is	 	centimeters,	so	the	function	should
return	 .

Example	2
The	grader	makes	the	following	function	call:

find_shortcut(9,	[10,	10,	10,	10,	10,	10,	10,	10],	
				[20,	0,	30,	0,	0,	40,	0,	40,	0],	30)

The	optimal	solution	is	to	connect	stations	 	and	 ,	in	which	case	the	diameter	is	
.

n − 1
n

80
80

2 7
110

3	/	3

Example	3
The	grader	makes	the	following	function	call:

find_shortcut(4,	[2,	2,	2],	
				[1,	10,	10,	1],	1)

The	optimal	solution	is	to	connect	stations	 	and	 ,	reducing	the	diameter	to	 .

Example	4
The	grader	makes	the	following	function	call:

find_shortcut(3,	[1,	1],	
				[1,	1,	1],	3)

Connecting	any	two	stations	with	the	express	line	of	length	 	does	not	improve	the
initial	diameter	of	the	railway	network	which	is	 .

Subtasks
In	all	Subtasks	 ,	 ,	 ,	 .

1.	 (9	points)	 ,
2.	 (14	points)	 ,
3.	 (8	points)	 ,
4.	 (7	points)	 ,
5.	 (33	points)	 ,
6.	 (22	points)	 ,
7.	 (4	points)	 ,
8.	 (3	points)	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integers	 	and	 ,
line	2:	integers	 ,
line	3:	integers	 .

1 2 21

3
4

2 ≤ n ≤ 1 000 000 1 ≤ ≤li 109 0 ≤ ≤di 109 1 ≤ c ≤ 109

2 ≤ n ≤ 10
2 ≤ n ≤ 100

2 ≤ n ≤ 250
2 ≤ n ≤ 500

2 ≤ n ≤ 3000
2 ≤ n ≤ 100 000

2 ≤ n ≤ 300 000
2 ≤ n ≤ 1 000 000

n c
, , … ,l0 l1 ln−2
, , … ,d0 d1 dn−1

