
1	/	3

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day2_1

paint
Country:	ISC

Paint	By	Numbers
Paint	By	Numbers	is	a	well-known	puzzle	game.	We	consider	a	simple	one-
dimensional	version	of	this	puzzle.	In	this	puzzle,	the	player	is	given	a	row	of	 	cells.
The	cells	are	numbered	0	through	 	from	the	left	to	the	right.	The	player	has	to
paint	each	cell	black	or	white.	We	use	‘X’	to	denote	black	cells	and	‘_’	to	denote	white
cells.

The	player	is	given	a	sequence	 	of	 	positive	integers:	the	clues.
He	has	to	paint	the	cells	in	a	way	such	that	the	black	cells	in	the	row	form	exactly	
blocks	of	consecutive	cells.	Moreover,	the	number	of	black	cells	in	the	 -th	block	(-
based)	from	the	left	should	be	equal	to	 .	For	example,	if	the	clues	are	 ,
the	solved	puzzle	must	have	exactly	two	blocks	of	consecutive	black	cells:	one	of
length	3	and	then	another	of	length	4.	Hence,	if	 	and	 ,	one	solution
satisfying	the	clues	is	“_XXX__XXXX”.	Note	that	“XXXX_XXX__”	does	not	satisfy	the
clues	because	the	blocks	of	black	cells	are	not	in	the	correct	order.	Also,
“__XXXXXXX_”	does	not	satisfy	the	clues	because	there	is	a	single	block	of	black	cells,
not	two	separate	blocks.

You	are	given	a	partially	solved	Paint	By	Numbers	puzzle.	That	is,	you	know	 	and	 ,
and	additionally	you	know	that	some	cells	must	be	black	and	some	cells	must	be
white.	Your	task	is	to	deduce	additional	information	about	the	cells.

Specifically,	a	valid	solution	is	one	that	satisfies	the	clues,	and	also	agrees	with	the
colors	of	the	known	cells.	Your	program	should	find	cells	that	are	painted	black	in
every	valid	solution,	and	cells	that	are	painted	white	in	every	valid	solution.

You	may	assume	that	the	input	is	such	that	there	is	at	least	one	valid	solution.

Implementation	details
You	should	implement	the	following	function	(method):

string	solve_puzzle(string	s,	int[]	c).
s:	string	of	length	 .	For	each	 	()	character	 	is:

‘X’,	if	cell	 	must	be	black,
‘_’,	if	cell	 	must	be	white,
‘.’,	if	there	is	no	information	about	cell	 .

c:	array	of	length	 	containing	clues,	as	defined	above,
the	function	should	return	a	string	of	length	 .	For	each	 	(

)	character	 	of	the	output	string	should	be:
‘X’,	if	cell	 	is	black	in	every	valid	solution,
‘_’,	if	cell	 	is	white	in	every	valid	solution,

n
n − 1

c = [, … ,]c0 ck−1 k
k

i 0
ci c = [3, 4]

n = 10 c = [3, 4]

n c

n i 0 ≤ i ≤ n − 1 i
i
i

i

k
n i

0 ≤ i ≤ n − 1 i
i
i

i

2	/	3

‘?’,	otherwise	(i.e.,	if	there	exist	two	valid	solutions	such	that	cell	 	is
black	in	one	of	them	and	white	in	the	other	one).

In	the	C	language	the	function	signature	is	a	bit	different:
void	solve_puzzle(int	n,	char*	s,	int	k,	int*	c,	char*	result)

n:	length	of	the	string	s	(number	of	cells),
k:	length	of	the	array	c	(number	of	clues),
the	other	parameters	are	the	same	as	above,
instead	of	returning	a	string	of	 	characters,	the	function	should	write	the
answer	to	the	string	result.

The	ASCII	codes	of	characters	used	in	this	problem	are:
‘X’:	88,
‘_’:	95,
‘.’:	46,
‘?’:	63.

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Examples

Example	1

solve_puzzle("..........",	[3,	4])

These	are	all	possible	valid	solutions	of	the	puzzle:
“XXX_XXXX__”,
“XXX__XXXX_”,
“XXX___XXXX”,
“_XXX_XXXX_”,
“_XXX__XXXX”,
“__XXX_XXXX”.

One	can	observe	that	the	cells	with	(0-based)	indices	2,	6,	and	7	are	black	in	each
valid	solution.	Each	of	the	other	cells	can	be,	but	does	not	have	to	be	black.	Hence,
the	correct	answer	is	“??X???XX??”.

Example	2

solve_puzzle("........",	[3,	4])

In	this	example	the	entire	solution	is	uniquely	determined	and	the	correct	answer	is
“XXX_XXXX”.

Example	3

solve_puzzle("..._._....",	[3])

In	this	example	we	can	deduce	that	cell	4	must	be	white	as	well	—	there	is	no	way	to
fit	three	consecutive	black	cells	between	the	white	cells	at	indices	3	and	5.	Hence,	the
correct	answer	is	“???___????”.

i

n

3	/	3

Example	4

solve_puzzle(".X........",	[3])

There	are	only	two	valid	solutions	that	match	the	above	description:
“XXX_______”,
“_XXX______”.

Thus,	the	correct	answer	is	“?XX?______”.

Subtasks
In	all	subtasks	 ,	and	 	for	each	 .

1.	 (7	points)	 ,	 ,	 	contains	only	‘.’	(empty	puzzle),
2.	 (3	points)	 ,	 	contains	only	‘.’,
3.	 (22	points)	 ,	 	contains	only	‘.’,
4.	 (27	points)	 ,	 	contains	only	‘.’	and	‘_’	(information	only	about	white

cells),
5.	 (21	points)	 ,
6.	 (10	points)	 ,	 ,
7.	 (10	points)	 ,	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	string	 ,
line	2:	integer	 	followed	by	 	integers	 .

1 ≤ k ≤ n 1 ≤ ≤ nci 0 ≤ i ≤ k − 1
n ≤ 20 k = 1 s
n ≤ 20 s

n ≤ 100 s
n ≤ 100 s

n ≤ 100
n ≤ 5 000 k ≤ 100
n ≤ 200 000 k ≤ 100

s
k k , … ,c0 ck−1

1	/	4

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day2_2

messy
Country:	ISC

Unscrambling	a	Messy	Bug
Ilshat	is	a	software	engineer	working	on	efficient	data	structures.	One	day	he
invented	a	new	data	structure.	This	data	structure	can	store	a	set	of	non-negative	 -
bit	integers,	where	 	is	a	power	of	two.	That	is,	 	for	some	non-negative
integer	 .

The	data	structure	is	initially	empty.	A	program	using	the	data	structure	has	to	follow
the	following	rules:

The	program	can	add	elements	that	are	 -bit	integers	into	the	data	structure,
one	at	a	time,	by	using	the	function	add_element(x).	If	the	program	tries	to
add	an	element	that	is	already	present	in	the	data	structure,	nothing	happens.
After	adding	the	last	element	the	program	should	call	the	function
compile_set()	exactly	once.
Finally,	the	program	may	call	the	function	check_element(x)	to	check
whether	the	element	 	is	present	in	the	data	structure.	This	function	may	be
used	multiple	times.

When	Ilshat	first	implemented	this	data	structure,	he	made	a	bug	in	the	function
compile_set().	The	bug	reorders	the	binary	digits	of	each	element	in	the	set	in	the
same	manner.	Ilshat	wants	you	to	find	the	exact	reordering	of	digits	caused	by	the
bug.

Formally,	consider	a	sequence	 	in	which	every	number	from	 	to
	appears	exactly	once.	We	call	such	a	sequence	a	permutation.	Consider	an

element	of	the	set,	whose	digits	in	binary	are	 	(with	 	being	the	most
significant	bit).	When	the	function	compile_set()	is	called,	this	element	is	replaced
by	the	element	 .

The	same	permutation	 	is	used	to	reorder	the	digits	of	every	element.	Any
permutation	is	possible,	including	the	possibility	that	 	for	each	

.

For	example,	suppose	that	 ,	 ,	and	you	have	inserted	into	the
set	integers	whose	binary	representations	are	0000,	1100	and	0111.	Calling	the
function	compile_set	changes	these	elements	to	0000,	0101	and	1110,
respectively.

Your	task	is	to	write	a	program	that	finds	the	permutation	 	by	interacting	with	the
data	structure.	It	should	(in	the	following	order):
1.	 choose	a	set	of	 -bit	integers,
2.	 insert	those	integers	into	the	data	structure,

n

n n = 2b

b

n

x

p = [, … ,]p0 pn−1 0
n − 1

, … ,a0 an−1 a0

, , … ,ap0
ap1

apn−1

p
= ipi

0 ≤ i ≤ n − 1

n = 4 p = [2, 1, 3, 0]

p

n

2	/	4

3.	 call	the	function	compile_set	to	trigger	the	bug,
4.	 check	the	presence	of	some	elements	in	the	modified	set,
5.	 use	that	information	to	determine	and	return	the	permutation	 .

Note	that	your	program	may	call	the	function	compile_set	only	once.

In	addition,	there	is	a	limit	on	the	number	of	times	your	program	calls	the	library
functions.	Namely,	it	may

call	add_element	at	most	 	times	(is	for	"writes"),
call	check_element	at	most	 	times	(is	for	"reads").

Implementation	details
You	should	implement	one	function	(method):

int[]	restore_permutation(int	n,	int	w,	int	r)
n:	the	number	of	bits	in	the	binary	representation	of	each	element	of	the
set	(and	also	the	length	of).
w:	the	maximum	number	of	add_element	operations	your	program	can
perform.
r:	the	maximum	number	of	check_element	operations	your	program	can
perform.
the	function	should	return	the	restored	permutation	 .

In	the	C	language,	the	function	prototype	is	a	bit	different:
void	restore_permutation(int	n,	int	w,	int	r,	int*	result)

n,	w	and	r	have	the	same	meaning	as	above.
the	function	should	return	the	restored	permutation	 	by	storing	it	into
the	provided	array	result:	for	each	 ,	it	should	store	the	value	 	into
result[i].

Library	functions
In	order	to	interact	with	the	data	structure,	your	program	should	use	the	following
three	functions	(methods):

void	add_element(string	x)
This	function	adds	the	element	described	by	x	to	the	set.

x:	a	string	of	'0'	and	'1'	characters	giving	the	binary	representation	of
an	integer	that	should	be	added	to	the	set.	The	length	of	x	must	be	 .

void	compile_set()
This	function	must	be	called	exactly	once.	Your	program	cannot	call
add_element()	after	this	call.	Your	program	cannot	call	check_element()
before	this	call.
boolean	check_element(string	x)
This	function	checks	whether	the	element	x	is	in	the	modified	set.

x:	a	string	of	'0'	and	'1'	characters	giving	the	binary	representation	of
the	element	that	should	be	checked.	The	length	of	x	must	be	 .
returns	true	if	element	x	is	in	the	modified	set,	and	false	otherwise.

Note	that	if	your	program	violates	any	of	the	above	restrictions,	its	grading	outcome

p

w w
r r

p

p

p
i pi

n

n

3	/	4

will	be	"Wrong	Answer".

For	all	the	strings,	the	first	character	gives	the	most	significant	bit	of	the
corresponding	integer.

The	grader	fixes	the	permutation	 	before	the	function	restore_permutation	is
called.

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Example
The	grader	makes	the	following	function	call:

restore_permutation(4,	16,	16).	We	have	 	and	the	program	can	do
at	most	 	"writes"	and	 	"reads".

The	program	makes	the	following	function	calls:
add_element("0001")
add_element("0011")
add_element("0100")
compile_set()
check_element("0001")	returns	false
check_element("0010")	returns	true
check_element("0100")	returns	true
check_element("1000")	returns	false
check_element("0011")	returns	false
check_element("0101")	returns	false
check_element("1001")	returns	false
check_element("0110")	returns	false
check_element("1010")	returns	true
check_element("1100")	returns	false

Only	one	permutation	is	consistent	with	these	values	returned	by	check_element():
the	permutation	 .	Thus,	restore_permutation	should	return	[2,
1,	3,	0].

Subtasks
1.	 (20	points)	 ,	 ,	 ,	 	for	at	most	2	indices	 	(

),
2.	 (18	points)	 ,	 ,	 ,
3.	 (11	points)	 ,	 ,	 ,
4.	 (21	points)	 ,	 ,	 ,
5.	 (30	points)	 ,	 ,	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integers	 ,	 ,	 ,
line	2:	 	integers	giving	the	elements	of	 .

p

n = 4
16 16

p = [2, 1, 3, 0]

n = 8 w = 256 r = 256 ≠ ipi i
0 ≤ i ≤ n − 1

n = 32 w = 320 r = 1024
n = 32 w = 1024 r = 320
n = 128 w = 1792 r = 1792
n = 128 w = 896 r = 896

n w r
n p

4	/	4

1	/	3

International	Olympiad	in	Informatics	2016
12-19th	August	2016
Kazan,	Russia
day2_3

aliens
Country:	ISC

Aliens
Our	satellite	has	just	discovered	an	alien	civilization	on	a	remote	planet.	We	have
already	obtained	a	low-resolution	photo	of	a	square	area	of	the	planet.	The	photo
shows	many	signs	of	intelligent	life.	Our	experts	have	identified	 	points	of	interest
in	the	photo.	The	points	are	numbered	from	 	to	 .	We	now	want	to	take	high-
resolution	photos	that	contain	all	of	those	 	points.

Internally,	the	satellite	has	divided	the	area	of	the	low-resolution	photo	into	an	 	by	
	grid	of	unit	square	cells.	Both	rows	and	columns	of	the	grid	are	consecutively

numbered	from	 	to	 	(from	the	top	and	left,	respectively).	We	use	 	to
denote	the	cell	in	row	 	and	column	 .	The	point	number	 	is	located	in	the	cell	

.	Each	cell	may	contain	an	arbitrary	number	of	these	points.

Our	satellite	is	on	a	stable	orbit	that	passes	directly	over	the	main	diagonal	of	the
grid.	The	main	diagonal	is	the	line	segment	that	connects	the	top	left	and	the	bottom
right	corner	of	the	grid.	The	satellite	can	take	a	high-resolution	photo	of	any	area	that
satisfies	the	following	constraints:

the	shape	of	the	area	is	a	square,
two	opposite	corners	of	the	square	both	lie	on	the	main	diagonal	of	the	grid,
each	cell	of	the	grid	is	either	completely	inside	or	completely	outside	the
photographed	area.

The	satellite	is	able	to	take	at	most	 	high-resolution	photos.

Once	the	satellite	is	done	taking	photos,	it	will	transmit	the	high-resolution	photo	of
each	photographed	cell	to	our	home	base	(regardless	of	whether	that	cell	contains
some	points	of	interest).	The	data	for	each	photographed	cell	will	only	be	transmitted
once,	even	if	the	cell	was	photographed	several	times.

Thus,	we	have	to	choose	at	most	 	square	areas	that	will	be	photographed,	assuring
that:

each	cell	containing	at	least	one	point	of	interest	is	photographed	at	least	once,
and
the	number	of	cells	that	are	photographed	at	least	once	is	minimized.

Your	task	is	to	find	the	smallest	possible	total	number	of	photographed	cells.

Implementation	details
You	should	implement	the	following	function	(method):

int64	take_photos(int	n,	int	m,	int	k,	int[]	r,	int[]	c)
n:	the	number	of	points	of	interest,
m:	the	number	of	rows	(and	also	columns)	in	the	grid,

n
0 n − 1

n

m
m

0 m − 1 (s, t)
s t i

(,)ri ci

k

k

2	/	3

k:	the	maximum	number	of	photos	the	satellite	can	take,
r	and	c:	two	arrays	of	length	 	describing	the	coordinates	of	the	grid	cells
that	contain	points	of	interest.	For	 n ,	the	 -th	point	of
interest	is	located	in	the	cell	(r[i],	c[i]),
the	function	should	return	the	smallest	possible	total	number	of	cells	that
are	photographed	at	least	once	(given	that	the	photos	must	cover	all	points
of	interest).

Please	use	the	provided	template	files	for	details	of	implementation	in	your
programming	language.

Examples

Example	1

take_photos(5,	7,	2,	[0,	4,	4,	4,	4],	[3,	4,	6,	5,	6])

In	this	example	we	have	a	 	grid	with	 	points	of	interest.	The	points	of	interest
are	located	in	four	different	cells:	 ,	 ,	 	and	 .	You	may	take	at
most	 	high-resolution	photos.

One	way	to	capture	all	five	points	of	interest	is	to	make	two	photos:	a	photo	of	the	
	square	containing	the	cells	 	and	 ,	and	a	photo	of	the	

square	containing	the	cells	 	and	 .	If	the	satellite	takes	these	two	photos,
it	will	transmit	the	data	about	 	cells.	This	amount	is	not	optimal.

The	optimal	solution	uses	one	photo	to	capture	the	 	square	containing	cells	
	and	 	and	another	photo	to	capture	the	 	square	containing	cells	
	and	 .	This	results	in	only	 	photographed	cells,	which	is	optimal,	so

take_photos	should	return	 .

Note	that	it	is	sufficient	to	photograph	the	cell	 	once,	even	though	it	contains
two	points	of	interest.

This	example	is	shown	in	the	figures	below.	The	leftmost	figure	shows	the	grid	that
corresponds	to	this	example.	The	middle	figure	shows	the	suboptimal	solution	in
which	 	cells	were	photographed.	The	rightmost	figure	shows	the	optimal	solution.

Example	2

take_photos(2,	6,	2,	[1,	4],	[4,	1])

n
0 ≤ i ≤ −1 i

7 × 7 5
(0, 3) (4, 4) (4, 5) (4, 6)

2

6 × 6 (0, 0) (5, 5) 3 × 3
(4, 4) (6, 6)

41

4 × 4
(0, 0) (3, 3) 3 × 3
(4, 4) (6, 6) 25

25

(4, 6)

41

2 (1, 4)

3	/	3

Here	we	have	 	points	of	interest	located	symmetrically:	in	the	cells	 	and	
.	Any	valid	photo	that	contains	one	of	them	contains	the	other	one	as	well.

Therefore,	it	is	sufficient	to	use	a	single	photo.

The	figures	below	show	this	example	and	its	optimal	solution.	In	this	solution	the
satellite	captures	a	single	photo	of	 	cells.

Subtasks
For	all	subtasks,	 .
1.	 (4	points)	 ,	 ,	 ,
2.	 (12	points)	 ,	 ,	for	all	 	such	that	 ,	

,
3.	 (9	points)	 ,	 ,
4.	 (16	points)	 ,	 ,
5.	 (19	points)	 ,	 ,	 ,
6.	 (40	points)	 ,	 .

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	integers	 ,	 	and	 ,
line	2	+	i	():	integers	 	and	 .

2 (1, 4)
(4, 1)

16

1 ≤ k ≤ n
1 ≤ n ≤ 50 1 ≤ m ≤ 100 k = n

1 ≤ n ≤ 500 1 ≤ m ≤ 1000 i 0 ≤ i ≤ n − 1
=ri ci

1 ≤ n ≤ 500 1 ≤ m ≤ 1000
1 ≤ n ≤ 4000 1 ≤ m ≤ 1 000 000
1 ≤ n ≤ 50 000 1 ≤ k ≤ 100 1 ≤ m ≤ 1 000 000
1 ≤ n ≤ 100 000 1 ≤ m ≤ 1 000 000

n m k
0 ≤ i ≤ n − 1 ri ci

