
1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-1	tasks

rail
Language:	en-ISC

Rail
Taiwan	has	a	big	railway	line	connecting	the	western	and	eastern	shores	of	the	island.	The	line
consists	of	 	blocks.	The	consecutive	blocks	are	numbered	 ,	starting	from	the	western
end.	Each	block	has	a	one-way	west-bound	track	on	the	north,	a	one-way	east-bound	track	on	the
south,	and	optionally	a	train	station	between	them.

There	are	three	types	of	blocks.	A	type	C	block	has	a	train	station	that	you	must	enter	from	the
northern	track	and	exit	to	the	southern	track,	a	type	D	block	has	a	train	station	that	you	must	enter
from	the	southern	track	and	exit	to	the	northern	track,	and	a	type	empty	block	has	no	train	station.	For
example,	in	the	following	figure	block	0	is	type	empty,	block	1	is	type	C,	and	block	5	is	type	D.	Blocks
connect	to	each	other	horizontally.	Tracks	of	adjacent	blocks	are	joined	by	connectors,	shown	as
shaded	rectangles	in	the	following	figure.

The	rail	system	has	 	stations	numbered	from	0	to	 .	We	assume	that	we	can	go	from	any
station	to	any	other	station	by	following	the	track.	For	example	we	can	go	from	station	0	to	station	2
by	starting	from	block	2,	then	passing	through	blocks	3	and	4	by	the	southern	track,	and	then	passing
through	station	1,	then	passing	through	block	4	by	the	northern	track,	and	finally	reaching	station	2	at
block	3.

Since	there	are	multiple	possible	routes,	the	distance	from	one	station	to	another	is	defined	as	the
minimum	number	of	connectors	the	route	passes	through.	For	example	the	shortest	route	from	station
0	to	2	is	through	blocks	2-3-4-5-4-3	and	passes	through	5	connectors,	so	the	distance	is	5.

A	computer	system	manages	the	rail	system.	Unfortunately	after	a	power	outage	the	computer	no
longer	knows	where	the	stations	are	and	what	types	of	blocks	they	are	in.	The	only	clue	the	computer
has	is	the	block	number	of	station	0,	which	is	always	in	a	type	C	block.	Fortunately	the	computer	can
query	the	distance	from	any	station	to	any	other	station.	For	example,	the	computer	can	query	'what	is
the	distance	from	station	0	to	station	2?'	and	it	will	receive	5.

Task
You	need	to	implement	a	function	findLocation	that	determines	for	each	station	the	block	number
and	block	type.

2	/	3

findLocation(n,	first,	location,	stype)
n:	the	number	of	stations.
first:	the	block	number	of	station	0.
location:	array	of	size	 ;	you	should	place	the	block	number	of	station	 	into
location[i].
stype:	array	of	size	 ;	you	should	place	the	block	type	of	station	 	into	stype[i]:	1	for
type	C	and	2	for	type	D.

You	can	call	a	function	getDistance	to	help	you	find	the	locations	and	types	of	stations.
getDistance(i,	j)	returns	the	distance	from	station	i	to	station	j.	getDistance(i,	i)
will	return	0.	getDistance(i,	j)	will	return	-1	if	i	or	j	is	outside	the	range	

.

Subtasks
In	all	subtasks	the	number	of	blocks	 	is	no	more	than	1,000,000.	In	some	subtasks	the	number	of
calls	to	getDistance	is	limited.	The	limit	varies	by	subtask.	Your	program	will	receive	'wrong
answer'	if	it	exceeds	this	limit.

subtask points getDistance
calls note

1 8 unlimited All	stations	except	0	are	in	type	D	blocks.

2 22 unlimited
All	stations	to	the	right	of	station	0	are	in	type
D	blocks,	and	all	stations	to	the	left	of	station	0
are	in	type	C	blocks.

3 26 no	additional	limits
4 44 no	additional	limits

Implementation	details
You	have	to	submit	exactly	one	file,	called	rail.c,	rail.cpp	or	rail.pas.	This	file	implements
findLocation	as	described	above	using	the	following	signatures.	You	also	need	to	include	a	header
file	rail.h	for	C/C++	implementation.
C/C++	program

void	findLocation(int	n,	int	first,	int	location[],	int	stype[]);

Pascal	program

procedure	findLocation(n,	first	:	longint;	var	location,
stype	:	array	of	longint);

3	/	3

The	signatures	of	getDistance	are	as	follows.
C/C++	program

int	getDistance(int	i,	int	j);

Pascal	program

function	getDistance(i,	j:	longint):	longint;

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	the	subtask	number

line	2:	n
line	 ,	():	stype[i]	(1	for	type	C	and	2	for	type	D),	location[i].

The	sample	grader	will	print	Correct	if	location[0]	...	location[n-1]	and	stype[0]	...
stype[n-1]	computed	by	your	program	match	the	input	when	findLocation	returns,	or
Incorrect	if	they	do	not	match.

1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-1	tasks

wall
Language:	en-ISC

Wall
Jian-Jia	is	building	a	wall	by	stacking	bricks	of	the	same	size	together.	This	wall	consists	of	 	columns
of	bricks,	which	are	numbered	0	to	 	from	left	to	right.	The	columns	may	have	different	heights.
The	height	of	a	column	is	the	number	of	bricks	in	it.

Jian-Jia	builds	the	wall	as	follows.	Initially	there	are	no	bricks	in	any	column.	Then,	Jian-Jia	goes
through	 	phases	of	adding	or	removing	bricks.	The	building	process	completes	when	all	 	phases
are	finished.	In	each	phase	Jian-Jia	is	given	a	range	of	consecutive	brick	columns	and	a	height	 ,	and
he	does	the	following	procedure:

In	an	adding	phase,	Jian-Jia	adds	bricks	to	those	columns	in	the	given	range	that	have	less	than	
	bricks,	so	that	they	have	exactly	 	bricks.	He	does	nothing	on	the	columns	having	 	or	more

bricks.

In	a	removing	phase,	Jian-Jia	removes	bricks	from	those	columns	in	the	given	range	that	have
more	than	 	bricks,	so	that	they	have	exactly	 	bricks.	He	does	nothing	on	the	columns	having	

	bricks	or	less.

Your	task	is	to	determine	the	final	shape	of	the	wall.

Example
We	assume	that	there	are	10	brick	columns	and	6	wall	building	phases.	All	ranges	in	the	following
table	are	inclusive.	Diagrams	of	the	wall	after	each	phase	are	shown	below.

phase type range height
0 add columns	1	to	8 4
1 remove columns	4	to	9 1
2 remove columns	3	to	6 5
3 add columns	0	to	5 3
4 add column	2 5
5 remove columns	6	to	7 0

Since	all	columns	are	initially	empty,	after	phase	0	each	of	the	columns	1	to	8	will	have	4	bricks.
Columns	0	and	9	remain	empty.	In	phase	1,	the	bricks	are	removed	from	columns	4	to	8	until	each	of
them	has	1	brick,	and	column	9	remains	empty.	Columns	0	to	3,	which	are	out	of	the	given	range,
remain	unchanged.	Phase	2	makes	no	change	since	columns	3	to	6	do	not	have	more	than	5	bricks.
After	phase	3	the	numbers	of	bricks	in	columns	0,	4,	and	5	increase	to	3.	There	are	5	bricks	in	column
2	after	phase	4.	Phase	5	removes	all	bricks	from	columns	6	and	7.

2	/	3

Task
Given	the	description	of	the	 	phases,	please	calculate	the	number	of	bricks	in	each	column	after	all
phases	are	finished.	You	need	to	implement	the	function	buildWall.

buildWall(n,	k,	op,	left,	right,	height,	finalHeight)
n:	the	number	of	columns	of	the	wall.

k:	the	number	of	phases.

op:	array	of	length	 ;	op[i]	is	the	type	of	phase	 :	1	for	an	adding	phase	and	2	for	a
removing	phase,	for	 .

left	and	right:	arrays	of	length	 ;	the	range	of	columns	in	phase	 	starts	with	column
left[i]	and	ends	with	column	right[i]	(including	both	endpoints	left[i]	and
right[i]),	for	 .	You	will	always	have	left[i]	 	right[i].

height:	array	of	length	 ;	height[i]	is	the	height	parameter	of	phase	 ,	for	
.

finalHeight:	array	of	length	 ;	you	should	return	your	results	by	placing	the	final
number	of	bricks	in	column	 	into	finalHeight[i],	for	 .

3	/	3

Subtasks
For	all	subtasks	the	height	parameters	of	all	phases	are	nonnegative	integers	less	or	equal	to	
.

subtask points note
1 8 no	additional	limits

2 24 all	adding	phases	are	before	all
removing	phases

3 29 no	additional	limits
4 39 no	additional	limits

Implementation	details
You	have	to	submit	exactly	one	file,	called	wall.c,	wall.cpp	or	wall.pas.	This	file	implements
the	subprogram	described	above	using	the	following	signatures.	You	also	need	to	include	a	header	file
wall.h	for	C/C++	program.

C/C++	program

void	buildWall(int	n,	int	k,	int	op[],	int	left[],	int	right[],
int	height[],	int	finalHeight[]);

Pascal	program

procedure	buildWall(n,	k	:	longint;	op,	left,	right,	height	:
array	of	longint;	var	finalHeight	:	array	of	longint);

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	n,	k.

line	 	():	op[i],	left[i],	right[i],	height[i].

1	/	3

International	Olympiad	in	Informatics	2014
13-20th	July	2014
Taipei,	Taiwan
Day-1	tasks

game
Language:	en-ISC

Game
Jian-Jia	is	a	young	boy	who	loves	playing	games.	When	he	is	asked	a	question,	he	prefers	playing
games	rather	than	answering	directly.	Jian-Jia	met	his	friend	Mei-Yu	and	told	her	about	the	flight
network	in	Taiwan.	There	are	 	cities	in	Taiwan	(numbered	0,	...,),	some	of	which	are
connected	by	flights.	Each	flight	connects	two	cities	and	can	be	taken	in	both	directions.

Mei-Yu	asked	Jian-Jia	whether	it	is	possible	to	go	between	any	two	cities	by	plane	(either	directly	or
indirectly).	Jian-Jia	did	not	want	to	reveal	the	answer,	but	instead	suggested	to	play	a	game.	Mei-Yu
can	ask	him	questions	of	the	form	"Are	cities	 	and	 	directly	connected	with	a	flight?",	and	Jian-Jia
will	answer	such	questions	immediately.	Mei-Yu	will	ask	about	every	pair	of	cities	exactly	once,	giving

	questions	in	total.	Mei-Yu	wins	the	game	if,	after	obtaining	the	answers	to	the	first	
	questions	for	some	 ,	she	can	infer	whether	or	not	it	is	possible	to	travel	between	every	pair	of
cities	by	flights	(either	directly	or	indirectly).	Otherwise,	that	is,	if	she	needs	all	 	questions,	then	the
winner	is	Jian-Jia.

In	order	for	the	game	to	be	more	fun	for	Jian-Jia,	the	friends	agreed	that	he	may	forget	about	the	real
Taiwanese	flight	network,	and	invent	the	network	as	the	game	progresses,	choosing	his	answers	based
on	Mei-Yu's	previous	questions.	Your	task	is	to	help	Jian-Jia	win	the	game,	by	deciding	how	he	should
answer	the	questions.

Examples
We	explain	the	game	rules	with	three	examples.	Each	example	has	 	cities	and	 	rounds	of
question	and	answer.

In	the	first	example	(the	following	table),	Jian-Jia	loses	because	after	round	4,	Mei-Yu	knows	for
certain	that	one	can	travel	between	any	two	cities	by	flights,	no	matter	how	Jian-Jia	answers	questions
5	or	6.

round question answer
1 0,	1 yes
2 3,	0 yes
3 1,	2 no
4 0,	2 yes
----- -------- ------
5 3,	1 no
6 2,	3 no

In	the	next	example	Mei-Yu	can	prove	after	round	3	that	no	matter	how	Jian-Jia	answers	questions	4,
5,	or	6,	one	cannot	travel	between	cities	0	and	1	by	flights,	so	Jian-Jia	loses	again.

2	/	3

round question answer
1 0,	3 no
2 2,	0 no
3 0,	1 no
----- -------- ------
4 1,	2 yes
5 1,	3 yes
6 2,	3 yes

In	the	final	example	Mei-Yu	cannot	determine	whether	one	can	travel	between	any	two	cities	by
flights	until	all	six	questions	are	answered,	so	Jian-Jia	wins	the	game.	Specifically,	because	Jian-Jia
answered	yes	to	the	last	question	(in	the	following	table),	then	it	is	possible	to	travel	between	any	pair
of	cities.	However,	if	Jian-Jia	had	answered	no	to	the	last	question	instead	then	it	would	be	impossible.

round question answer
1 0,	3 no
2 1,	0 yes
3 0,	2 no
4 3,	1 yes
5 1,	2 no
6 2,	3 yes

Task
Please	write	a	program	that	helps	Jian-Jia	win	the	game.	Note	that	neither	Mei-Yu	nor	Jian-Jia	knows
the	strategy	of	each	other.	Mei-Yu	can	ask	about	pairs	of	cities	in	any	order,	and	Jian-Jia	must	answer
them	immediately	without	knowing	the	future	questions.	You	need	to	implement	the	following	two
functions.

initialize(n)	--	We	will	call	your	initialize	first.	The	parameter	 	is	the	number	of
cities.

hasEdge(u,	v)	--	Then	we	will	call	hasEdge	for	 	times.	These	calls
represent	Mei-Yu's	questions,	in	the	order	that	she	asks	them.	You	must	answer	whether	there
is	a	direct	flight	between	cities	 	and	 .	Specifically,	the	return	value	should	be	1	if	there	is	a
direct	flight,	or	0	otherwise.

Subtasks
Each	subtask	consists	of	several	games.	You	will	only	get	points	for	a	subtask	if	your	program	wins	all
of	the	games	for	Jian-Jia.

subtask points
1 15

3	/	3

2 27
3 58

subtask points

Implementation	details
You	have	to	submit	exactly	one	file,	called	game.c,	game.cpp	or	game.pas.	This	file	implements
the	subprograms	described	above	using	the	following	signatures.

C/C++	programs

void	initialize(int	n);
int	hasEdge(int	u,	int	v);

Pascal	programs

procedure	initialize(n:	longint);
function	hasEdge(u,	v:	longint):	longint;

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	n
the	following	 	lines:	each	line	contains	two	integers	u	and	v	that	describe	a	question	regarding
cities	 	and	 .

