
1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	2

towns
Language:	en-ISC

Towns
There	are	 	small	towns	in	Kazakhstan,	numbered	from	 	through	 .	There	is	also	an	unknown
number	of	large	cities.	The	small	towns	and	large	cities	of	Kazakhstan	are	jointly	called	settlements.

All	the	settlements	of	Kazakhstan	are	connected	by	a	single	network	of	bidirectional	highways.	Each
highway	connects	two	distinct	settlements,	and	each	pair	of	settlements	is	directly	connected	by	at
most	one	highway.	For	each	pair	of	settlements	 	and	 	there	is	a	unique	way	in	which	one	can	go
from	 	to	 	using	the	highways,	as	long	as	no	highway	is	used	more	than	once.

It	is	known	that	each	small	town	is	directly	connected	to	a	single	other	settlement,	and	each	large	city
is	directly	connected	to	three	or	more	settlements.

The	following	figure	shows	a	network	of	 	small	towns	and	 	large	cities.	Small	towns	are	depicted
as	circles	and	labeled	by	integers,	large	cities	are	depicted	as	squares	and	labeled	by	letters.

Every	highway	has	a	positive	integer	length.	The	distance	between	two	settlements	is	the	minimum
sum	of	the	lengths	of	the	highways	one	needs	to	travel	in	order	to	get	from	one	settlement	to	the	other.

For	each	large	city	 	we	can	measure	the	distance	 	to	the	small	town	that	is	the	farthest	away
from	that	city.	A	large	city	 	is	a	hub	if	the	distance	 	is	the	smallest	among	all	large	cities.	The
distance	between	a	hub	and	a	small	town	that	is	farthest	away	from	the	hub	will	be	denoted	by	 .
Thus,	 	is	the	smallest	of	all	values	 .

In	the	above	example	the	farthest	small	town	from	city	 	is	town	 ,	and	the	distance	between	them	is	
.	For	city	 	we	also	have	 .	(One	of	the	small	towns	that	are

farthest	away	from	 	is	town	6.)	The	only	hub	in	the	above	example	is	city	 ,	with	 .
Hence,	in	the	above	example	 	is	 .

Removing	a	hub	divides	the	network	into	multiple	connected	pieces.	A	hub	is	balanced	if	each	of



2	/	3

those	pieces	contains	at	most	 	small	towns.	(We	stress	that	we	do	not	count	the	large	cities.)
Note	that	 	denotes	the	largest	integer	which	is	not	greater	than	 .

In	our	example,	city	 	is	a	hub.	If	we	remove	city	 ,	the	network	will	break	into	four	connected
pieces.	These	four	pieces	consist	of	the	following	sets	of	small	towns:	{ },	{ },	{ },
and	{ }.	None	of	these	pieces	has	more	than	 	small	towns,	hence	city	 	is	a	balanced
hub.

Task
Initially,	the	only	information	you	have	about	the	network	of	settlements	and	highways	is	the	number	
	of	small	towns.	You	do	not	know	the	number	of	large	cities.	You	also	do	not	know	anything	about

the	layout	of	highways	in	the	country.	You	can	only	obtain	new	information	by	asking	queries	about
distances	between	pairs	of	small	towns.

Your	task	is	to	determine:

In	all	subtasks:	the	distance	 .

In	subtasks	3	to	6:	whether	there	is	a	balanced	hub	in	the	network.

You	need	to	implement	the	function	hubDistance.	The	grader	will	evaluate	multiple	test	cases	in	a
single	run.	The	number	of	test	cases	per	run	is	at	most	 .	For	each	test	case	the	grader	will	call	your
function	hubDistance	exactly	once.	Make	sure	that	your	function	initializes	all	necessary	variables
every	time	it	is	called.

hubDistance(N,	sub)
N:	the	number	of	small	towns.
sub:	the	subtask	number	(explained	in	the	Subtasks	section).
If	sub	is	1	or	2,	the	function	can	return	either	 	or	

If	sub	is	greater	than	2,	if	there	exists	a	balanced	hub	then	the	function	must	return	 ,
otherwise	it	must	return	 .

Your	function	hubDistance	can	obtain	information	about	the	network	of	highways	by	calling	the
grader	function	getDistance(i,	j).	This	function	returns	the	distance	between	the	small	towns	
and	 .	Note	that	if	 	and	 	are	equal,	the	function	returns	 .	It	also	returns	 	when	the	arguments	are
invalid.

Subtasks
In	each	test	case:

	is	between	 	and	 	inclusive.

The	distance	between	any	two	distinct	small	towns	is	between	1	and	1,000,000	inclusive.

The	number	of	queries	your	program	may	make	is	limited.	The	limit	varies	by	subtask,	as	given	in	the
table	below.	If	your	program	tries	to	exceed	the	limit	on	the	number	of	queries,	it	will	be	terminated
and	it	will	be	assumed	to	have	given	an	incorrect	answer.



3	/	3

subtask points number	of
queries

find	balanced
hub additional	constraints

1 13 NO none

2 12 NO none

3 13 YES none

4 10 YES each	large	city	is	connected	to	exactly	three
settlements

5 13 YES none
6 39 YES none

Note	that	 	denotes	the	smallest	integer	which	is	greater	than	or	equal	to	 .

Sample	grader
Note	that	the	subtask	number	is	a	part	of	the	input.	The	sample	grader	changes	its	behavior	according
to	the	subtask	number.

The	sample	grader	reads	the	input	from	file	towns.in	in	the	following	format:
line	1:	Subtask	number	and	the	number	of	test	cases.

line	2:	 ,	the	number	of	small	towns	in	the	first	test	case.

following	 	lines:	The	 -th	number	 	in	the	 -th	of	these	lines	 	is
the	distance	between	small	towns	 	and	 .

The	next	test	cases	follow.	They	are	given	in	the	same	format	as	the	first	test	case.

For	each	test	case,	the	sample	grader	prints	the	return	value	of	hubDistance	and	the	number	of	calls
made	on	separate	lines.

The	input	file	corresponding	to	the	example	above	is:

1	1
11
0	17	18	20	17	12	20	16	23	20	11
17	0	23	25	22	17	25	21	28	25	16
18	23	0	12	21	16	24	20	27	24	17
20	25	12	0	23	18	26	22	29	26	19
17	22	21	23	0	9	21	17	26	23	16
12	17	16	18	9	0	16	12	21	18	11
20	25	24	26	21	16	0	10	29	26	19
16	21	20	22	17	12	10	0	25	22	15
23	28	27	29	26	21	29	25	0	21	22
20	25	24	26	23	18	26	22	21	0	19
11	16	17	19	16	11	19	15	22	19	0

This	format	is	quite	different	from	specifying	the	list	of	highways.	Note	that	you	are	allowed	to	modify
sample	graders,	so	that	they	use	a	different	input	format.



1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	2

sorting
Language:	en-ISC

Sorting
Aizhan	has	a	sequence	of	 	integers	 .	The	sequence	consists	of	distinct
numbers	from	 	to	 .	She	is	trying	to	sort	this	sequence	in	ascending	order	by	swapping	some
pairs	of	elements.	Her	friend	Ermek	is	also	going	to	swap	some	pairs	of	elements	—	not	necessarily	in
a	helpful	way.

Ermek	and	Aizhan	are	going	to	modify	the	sequence	in	a	series	of	rounds.	In	each	round,	first	Ermek
makes	a	swap	and	then	Aizhan	makes	another	swap.	More	precisely,	the	person	making	a	swap
chooses	two	valid	indices	and	swaps	the	elements	at	those	indices.	Note	that	the	two	indices	do	not
have	to	be	distinct.	If	they	are	equal,	the	current	person	swaps	an	element	with	itself,	which	does	not
change	the	sequence.

Aizhan	knows	that	Ermek	does	not	actually	care	about	sorting	the	sequence	 .	She	also	knows	the
exact	indices	Ermek	is	going	to	choose.	Ermek	plans	to	take	part	in	 	rounds	of	swapping.	We
number	these	rounds	from	 	to	 .	For	each	 	between	 	and	 	inclusive,	Ermek	will
choose	the	indices	 	and	 	in	round	 .

Aizhan	wants	to	sort	the	sequence	 .	Before	each	round,	if	Aizhan	sees	that	the	sequence	is	already
sorted	in	ascending	order,	she	will	terminate	the	entire	process.	Given	the	original	sequence	 	and	the
indices	Ermek	is	going	to	choose,	your	task	is	to	find	a	sequence	of	swaps,	which	Aizhan	can	use	to
sort	the	sequence	 .	In	addition,	in	some	subtasks	you	are	required	to	find	a	sequence	of	swaps	that	is
as	short	as	possible.	You	may	assume	that	it	is	possible	to	sort	the	sequence	 	in	 	or	fewer	rounds.

Note	that	if	Aizhan	sees	that	the	sequence	 	is	sorted	after	Ermek’s	swap,	she	can	choose	to	swap
two	equal	indices	(e.g.,	 	and	 ).	As	a	result	the	sequence	 	is	also	sorted	after	the	entire	round,	so
Aizhan	reaches	her	goal.	Also	note	that	if	the	initial	sequence	 	is	already	sorted,	the	minimal	number
of	rounds	needed	to	sort	it	is	 .

Example	1

Suppose	that:

The	initial	sequence	is	 .

Ermek	is	willing	to	make	 	swaps.

The	sequences	 	and	 	that	describe	the	indices	Ermek	is	going	to	choose	are	
	and	 .	In	other	words,	the	pairs	of	indices	that	Ermek

plans	to	choose	are	 ,	 ,	 ,	 ,	 ,	and	 .

In	this	setting	Aizhan	can	sort	the	sequence	 	into	the	order	 	in	three	rounds.	She	can	do
so	by	choosing	the	indices	 ,	 ,	and	then	 .

The	following	table	shows	how	Ermek	and	Aizhan	modify	the	sequence.



2	/	3

Round Player Pair	of	swapped	indices Sequence
beginning

Ermek
Aizhan
Ermek
Aizhan
Ermek
Aizhan

Round Player Pair	of	swapped	indices Sequence

Example	2

Suppose	that:

The	initial	sequence	is	 .

Ermek	is	willing	to	make	 	swaps.

The	pairs	of	indices	that	Ermek	plans	to	choose	are	 ,	 ,	 ,	 ,	and	 .

In	this	setting	Aizhan	can	sort	the	sequence	 	in	three	rounds,	for	example	by	choosing	the	pairs	of
indices	 ,	 ,	and	then	 .	The	following	table	shows	how	Ermek	and	Aizhan	modify	the
sequence.

Round Player Pair	of	swapped	indices Sequence
beginning

Ermek
Aizhan
Ermek
Aizhan
Ermek
Aizhan

Task
You	are	given	the	sequence	 ,	the	number	 ,	and	the	sequences	of	indices	 	and	 .	Compute	a
sequence	of	swaps,	which	Aizhan	can	use	to	sort	the	sequence	 .	In	subtasks	 	and	 	the	sequence
of	swaps	you	find	has	to	be	the	shortest	possible.

You	need	to	implement	the	function	findSwapPairs:
findSwapPairs(N,	S,	M,	X,	Y,	P,	Q) 	—	This	function	will	be	called	by	the	grader
exactly	once.

N:	the	length	of	the	sequence	 .

S:	an	array	of	integers	containing	the	initial	sequence	 .



3	/	3

M:	the	number	of	swaps	Ermek	plans	to	make.

X,	Y:	arrays	of	integers	of	length	 .	For	 ,	in	round	 	Ermek	plans	to
swap	numbers	at	indices	 	and	 .

P,	Q:	arrays	of	integers.	Use	these	arrays	to	report	one	possible	sequence	of	swaps
Aizhan	can	make	to	sort	the	sequence	 .	Denote	by	 	the	length	of	the	sequence	of
swaps	that	your	program	has	found.	For	each	 	between	 	and	 	inclusive,	the
indices	Aizhan	should	choose	in	round	 	should	be	stored	into	 	and	 .	You	may
assume	that	the	arrays	P	and	Q	have	already	been	allocated	to	 	elements	each.

This	function	should	return	the	value	of	 	(defined	above).

Subtasks

subtask points extra	constraints	on	X,	Y requirement	on	R
1 8 	for	all	
2 12 	for	all	
3 16 	for	all	
4 18 none
5 20 none minimum	possible
6 26 none minimum	possible

You	may	assume	that	there	exists	a	solution	that	requires	 	or	fewer	rounds.

Sample	grader
The	sample	grader	reads	the	input	from	the	file	sorting.in	in	the	following	format:

line	1:	N
line	2:	S[0]	…	S[N	-	1]
line	3:	M
lines	4,	…,	M	+	3:	X[i]	Y[i]

The	sample	grader	prints	the	following	output:

line	1:	the	return	value	 	of	findSwapPairs
line	2+ ,	for	 :	P[i]	Q[i]



1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	2

horses
Language:	en-ISC

Horses
Mansur	loves	to	breed	horses,	just	like	his	ancient	ancestors	did.	He	now	has	the	largest	herd	in
Kazakhstan.	But	this	was	not	always	the	case.	 	years	ago,	Mansur	was	just	a	dzhigit	(Kazakh	for	a
young	man)	and	he	only	had	a	single	horse.	He	dreamed	to	make	a	lot	of	money	and	to	finally
become	a	bai	(Kazakh	for	a	very	rich	person).

Let	us	number	the	years	from	 	to	 	in	chronological	order	(i.e.,	year	 	is	the	most	recent
one).	The	weather	of	each	year	influenced	the	growth	of	the	herd.	For	each	year	 ,	Mansur
remembers	a	positive	integer	growth	coefficient	 .	If	you	started	year	 	with	 	horses,	you	ended
the	year	with	 	horses	in	your	herd.

Horses	could	only	be	sold	at	the	end	of	a	year.	For	each	year	 ,	Mansur	remembers	a	positive	integer	
:	the	price	for	which	he	could	sell	a	horse	at	the	end	of	year	 .	After	each	year,	it	was	possible	to

sell	arbitrarily	many	horses,	each	at	the	same	price	 .

Mansur	wonders	what	is	the	largest	amount	of	money	he	could	have	now	if	he	had	chosen	the	best
moments	to	sell	his	horses	during	the	 	years.	You	have	the	honor	of	being	a	guest	on	Mansur’s	toi
(Kazakh	for	holiday),	and	he	asked	you	to	answer	this	question.

Mansur’s	memory	improves	throughout	the	evening,	and	so	he	makes	a	sequence	of	 	updates.	Each
update	will	change	either	one	of	the	values	 	or	one	of	the	values	 .	After	each	update	he
again	asks	you	the	largest	amount	of	money	he	could	have	earned	by	selling	his	horses.	Mansur’s
updates	are	cumulative:	each	of	your	answers	should	take	into	account	all	of	the	previous	updates.
Note	that	a	single	 	or	 	may	be	updated	multiple	times.

The	actual	answers	to	Mansur’s	questions	can	be	huge.	In	order	to	avoid	working	with	large	numbers,
you	are	only	required	to	report	the	answers	modulo	 .

Example
Suppose	that	there	are	 	years,	with	the	following	information:

0 1 2

X 2 1 3

Y 3 4 1

For	these	initial	values,	Mansur	can	earn	the	most	if	he	sells	both	his	horses	at	the	end	of	year	1.	The
entire	process	will	look	as	follows:

Initially,	Mansur	has	1	horse.

After	year	0	he	will	have	 	horses.



2	/	3

After	year	1	he	will	have	 	horses.

He	can	now	sell	those	two	horses.	The	total	profit	will	be	 .

Then,	suppose	that	there	is	 	update:	changing	 	to	 .

After	the	update	we	will	have:

0 1 2

X 2 1 3

Y 3 2 1

In	this	case,	one	of	the	optimal	solutions	is	to	sell	one	horse	after	year	0	and	then	three	horses	after
year	2.	The	entire	process	will	look	as	follows:

Initially,	Mansur	has	1	horse.

After	year	0	he	will	have	 	horses.

He	can	now	sell	one	of	those	horses	for	 ,	and	have	one	horse	left.

After	year	1	he	will	have	 	horse.

After	year	2	he	will	have	 	horses.

He	can	now	sell	those	three	horses	for	 .	The	total	amount	of	money	is	 .

Task
You	are	given	 ,	 ,	 ,	and	the	list	of	updates.	Before	the	first	update,	and	after	every	update,
compute	the	maximal	amount	of	money	that	Mansur	could	get	for	his	horses,	modulo	 .	You
need	to	implement	the	functions	init,	updateX,	and	updateY.

init(N,	X,	Y)	—	The	grader	will	call	this	function	first	and	exactly	once.
N:	the	number	of	years.
X:	an	array	of	length	 .	For	 ,	 	gives	the	growth	coefficient	for	year	
.

Y:	an	array	of	length	 .	For	 ,	 	gives	the	price	of	a	horse	after	year	
.

Note	that	both	X	and	Y	specify	the	initial	values	given	by	Mansur	(before	any	updates).
After	init	terminates,	the	arrays	X	and	Y	remain	valid,	and	you	may	modify	their
contents	if	you	wish.

The	function	should	return	the	maximal	amount	of	money	Mansur	could	get	for	these
initial	values	of	 	and	 ,	modulo	 .

updateX(pos,	val)
pos:	an	integer	from	the	range	 .



3	/	3

val:	the	new	value	for	 pos .
The	function	should	return	the	maximal	amount	of	money	Mansur	could	get	after	this
update,	modulo	 .

updateY(pos,	val)
pos:	an	integer	from	the	range	 .

val:	the	new	value	for	 pos .
The	function	should	return	the	maximal	amount	of	money	Mansur	could	get	after	this
update,	modulo	 .

You	may	assume	that	all	the	initial,	as	well	as	updated	values	of	 	and	 	are	between	 	and	
	inclusive.

After	calling	init,	the	grader	will	call	updateX	and	updateY	several	times.	The	total	number	of
calls	to	updateX	and	updateY	will	be	 .

Subtasks

subtask points additional	constraints

1 17 ,	

2 17 none

3 20 	and	 	for	init	and
updateX	correspondingly

4 23 none
5 23 none

Sample	grader
The	sample	grader	reads	the	input	from	the	file	horses.in	in	the	following	format:

line	1:	N
line	2:	X[0]	…	X[N	-	1]
line	3:	Y[0]	…	Y[N	-	1]
line	4:	M
lines	5,	…,	M	+	4:	three	numbers	type	pos	val	(type=1	for	updateX	and	type=2	for
updateY).

The	sample	grader	prints	the	return	value	of	init	followed	by	the	return	values	of	all	calls	to
updateX	and	updateY.


