
1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	1

scales
Language:	en-ISC

Scales
Amina	has	six	coins,	numbered	from	 	to	 .	She	knows	that	the	coins	all	have	different	weights.	She
would	like	to	order	them	according	to	their	weight.	For	this	purpose	she	has	developed	a	new	kind	of
balance	scale.

A	traditional	balance	scale	has	two	pans.	To	use	such	a	scale,	you	place	a	coin	into	each	pan	and	the
scale	will	determine	which	coin	is	heavier.

Amina’s	new	scale	is	more	complex.	It	has	four	pans,	labeled	 ,	 ,	 ,	and	 .	The	scale	has	four
different	settings,	each	of	which	answers	a	different	question	regarding	the	coins.	To	use	the	scale,
Amina	must	place	exactly	one	coin	into	each	of	the	pans	 ,	 ,	and	 .	Additionally,	in	the	fourth
setting	she	must	also	place	exactly	one	coin	into	pan	 .

The	four	settings	will	instruct	the	scale	to	answer	the	following	four	questions:

1.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	heaviest?
2.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	lightest?
3.	 Which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	median?	(This	is	the	coin	that	is	neither	the

heaviest	nor	the	lightest	of	the	three.)
4.	 Among	the	coins	in	pans	 ,	 ,	and	 ,	consider	only	the	coins	that	are	heavier	than	the	coin	on

pan	 .	If	there	are	any	such	coins,	which	of	these	coins	is	the	lightest?	Otherwise,	if	there	are
no	such	coins,	which	of	the	coins	in	pans	 ,	 ,	and	 	is	the	lightest?

Task
Write	a	program	that	will	order	Amina’s	six	coins	according	to	their	weight.	The	program	can	query
Amina’s	scale	to	compare	weights	of	coins.	Your	program	will	be	given	several	test	cases	to	solve,
each	corresponding	to	a	new	set	of	six	coins.

Your	program	should	implement	the	functions	init	and	orderCoins.	During	each	run	of	your
program,	the	grader	will	first	call	init	exactly	once.	This	gives	you	the	number	of	test	cases	and
allows	you	to	initialize	any	variables.	The	grader	will	then	call	orderCoins()	once	per	test	case.

init(T)
T:	The	number	of	test	cases	your	program	will	have	to	solve	during	this	run.	T	is	an
integer	from	the	range	 .

This	function	has	no	return	value.

orderCoins()
This	function	is	called	exactly	once	per	test	case.

The	function	should	determine	the	correct	order	of	Amina’s	coins	by	calling	the	grader

2	/	3

functions	getHeaviest(),	getLightest(),	getMedian(),	and/or
getNextLightest().
Once	the	function	knows	the	correct	order,	it	should	report	it	by	calling	the	grader	function
answer().
After	calling	answer(),	the	function	orderCoins()	should	return.	It	has	no	return
value.

You	may	use	the	following	grader	functions	in	your	program:

answer(W)	—	your	program	should	use	this	function	to	report	the	answer	that	it	has	found.

W:	An	array	of	length	6	containing	the	correct	order	of	coins.	W[0]	through	W[5]	should
be	the	coin	numbers	(i.e.,	numbers	from	 	to)	in	order	from	the	lightest	to	the	heaviest
coin.

Your	program	should	only	call	this	function	from	orderCoins(),	once	per	test	case.
This	function	has	no	return	value.

getHeaviest(A,	B,	C),	getLightest(A,	B,	C),	getMedian(A,	B,	C) 	—	these
correspond	to	settings	1,	2	and	3	respectively	for	Amina’s	scale.

A,	B,	C:	The	coins	that	are	put	in	pans	 ,	 ,	and	 ,	respectively.	A,	B,	and	C	should	be
three	distinct	integers,	each	between	 	and	 	inclusive.

Each	function	returns	one	of	the	numbers	A,	B,	and	C:	the	number	of	the	appropriate	coin.
For	example,	getHeaviest(A,	B,	C)	returns	the	number	of	the	heaviest	of	the	three
given	coins.

getNextLightest(A,	B,	C,	D) 	—	this	corresponds	to	setting	4	for	Amina’s	scale

A,	B,	C,	D:	The	coins	that	are	put	in	pans	 ,	 ,	 ,	and	 ,	respectively.	A,	B,	C,	and	D
should	be	four	distinct	integers,	each	between	 	and	 	inclusive.

The	function	returns	one	of	the	numbers	A,	B,	and	C:	the	number	of	the	coin	selected	by
the	scale	as	described	above	for	setting	4.	That	is,	the	returned	coin	is	the	lightest	amongst
those	coins	on	pans	 ,	 ,	and	 	that	are	heavier	than	the	coin	in	pan	 ;	or,	if	none	of
them	is	heavier	than	the	coin	on	pan	 ,	the	returned	coin	is	simply	the	lightest	of	all	three
coins	on	pans	 ,	 ,	and	 .

Scoring
There	are	no	subtasks	in	this	problem.	Instead,	your	score	will	be	based	on	how	many	weighings	(total
number	of	calls	to	grader	functions	getLightest(),	getHeaviest(),	getMedian()	and/or
getNextLightest())	your	program	makes.

Your	program	will	be	run	multiple	times	with	multiple	test	cases	in	each	run.	Let	 	be	the	number	of
runs	of	your	program.	This	number	is	fixed	by	the	test	data.	If	your	program	does	not	order	the	coins
correctly	in	any	test	case	of	any	run,	it	will	get	0	points.	Otherwise,	the	runs	are	scored	individually	as
follows.

Let	 	be	the	smallest	number	such	that	it	is	possible	to	sort	any	sequence	of	six	coins	using	
weighings	on	Amina’s	scale.	To	make	the	task	more	challenging,	we	do	not	reveal	the	value	of	

3	/	3

here.

Suppose	the	largest	number	of	weighings	amongst	all	test	cases	of	all	runs	is	 	for	some	integer	
.	Then,	consider	a	single	run	of	your	program.	Let	the	largest	number	of	weighings	amongst	all	

test	cases	in	this	run	be	 	for	some	non-negative	integer	 .	(If	you	use	fewer	than	 	weighings
for	every	test	case,	then	 .)	Then,	the	score	for	this	run	will	be	 ,	rounded	down	to

two	digits	after	the	decimal	point.

In	particular,	if	your	program	makes	at	most	 	weighings	in	each	test	case	of	every	run,	you	will	get
100	points.

Example
Suppose	the	coins	are	ordered	 	from	the	lightest	to	the	heaviest.

Function	call Returns Explanation
getMedian(4,	5,	6) 6 Coin	 	is	the	median	among	coins	 ,	 ,	and	 .
getHeaviest(3,	1,	2) 1 Coin	 	is	the	heaviest	among	coins	 ,	 ,	and	 .
getNextLightest(2,
3,	4,	5) 3 Coins	 ,	 ,	and	 	are	all	lighter	than	coin	 ,	so	the	lightest	among

them	()	is	returned.
getNextLightest(1,
6,	3,	4) 6 Coins	 	and	 	are	both	heavier	than	coin	 .	Among	coins	 	and	 ,

coin	 	is	the	lightest	one.
getHeaviest(3,	5,	6) 5 Coin	 	is	the	heaviest	among	coins	 ,	 	and	 .
getMedian(1,	5,	6) 1 Coin	 	is	the	median	among	coins	 ,	 	and	 .
getMedian(2,	4,	6) 6 Coin	 	is	the	median	among	coins	 ,	 	and	 .
answer([3,	4,	6,	2,
1,	5]) The	program	found	the	right	answer	for	this	test	case.

Sample	grader
The	sample	grader	reads	input	in	the	following	format:

line	 :	 	—-	the	number	of	test	cases

each	of	the	lines	from	 	to	 :	a	sequence	of	 	distinct	numbers	from	 	to	 :	the	order	of
the	coins	from	the	lightest	to	the	heaviest.

For	instance,	an	input	that	consists	of	two	test	cases	where	the	coins	are	ordered	 	and	
	looks	as	follows:

2
1	2	3	4	5	6
3	4	6	2	1	5

The	sample	grader	prints	the	array	that	was	passed	as	a	parameter	to	the	answer()	function.

1	/	2

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	1

teams
Language:	en-ISC

Teams
There	is	a	class	of	 	students,	numbered	 	through	 .	Every	day	the	teacher	of	the	class	has
some	projects	for	the	students.	Each	project	has	to	be	completed	by	a	team	of	students	within	the
same	day.	The	projects	may	have	various	difficulty.	For	each	project,	the	teacher	knows	the	exact
size	of	a	team	that	should	work	on	it.

Different	students	may	prefer	different	team	sizes.	More	precisely,	student	 	can	only	be	assigned	to	a
team	of	size	between	 	and	 	inclusive.	On	each	day,	a	student	may	be	assigned	to	at	most	one
team.	Some	students	might	not	be	assigned	to	any	teams.	Each	team	will	work	on	a	single	project.

The	teacher	has	already	chosen	the	projects	for	each	of	the	next	 	days.	For	each	of	these	days,
determine	whether	it	is	possible	to	assign	students	to	teams	so	that	there	is	one	team	working	on	each
project.

Example
Suppose	there	are	 	students	and	 	days.	The	students’	constraints	on	team	sizes	are
given	in	the	table	below.

student 0 1 2 3
1 2 2 2
2 3 3 4

On	the	first	day	there	are	 	projects.	The	required	team	sizes	are	 	and	 .
These	two	teams	can	be	formed	by	assigning	student	0	to	a	team	of	size	1	and	the	remaining	three
students	to	a	team	of	size	3.

On	the	second	day	there	are	 	projects	again,	but	this	time	the	required	team	sizes	are	
	and	 .	In	this	case	it	is	not	possible	to	form	the	teams,	as	there	is	only	one	student

who	can	be	in	a	team	of	size	1.

Task
You	are	given	the	description	of	all	students:	 ,	 ,	and	 ,	as	well	as	a	sequence	of	 	questions	—
one	about	each	day.	Each	question	consists	of	the	number	 	of	projects	on	that	day	and	a	sequence	
	of	length	 	containing	the	required	team	sizes.	For	each	question,	your	program	must	return

whether	it	is	possible	to	form	all	the	teams.

You	need	to	implement	the	functions	init	and	can:
init(N,	A,	B)	—	The	grader	will	call	this	function	first	and	exactly	once.

N:	the	number	of	students.

2	/	2

A:	an	array	of	length	N:	A[i]	is	the	minimum	team	size	for	student	 .
B:	an	array	of	length	N:	B[i]	is	the	maximum	team	size	for	student	 .
The	function	has	no	return	value.

You	may	assume	that	 A[i] B[i] N	for	each	 N .

can(M,	K)	—	After	calling	init	once,	the	grader	will	call	this	function	 	times	in	a	row,	once
for	each	day.

M:	the	number	of	projects	for	this	day.
K:	an	array	of	length	M	containing	the	required	team	size	for	each	of	these	projects.
The	function	should	return	1	if	it	is	possible	to	form	all	the	required	teams	and	0	otherwise.

You	may	assume	that	 M ,	and	that	for	each	 M 	we	have	 K[i]
.	Note	that	the	sum	of	all	K[i]	may	exceed	 .

Subtasks
Let	us	denote	by	 	the	sum	of	values	of	M	in	all	calls	to	can(M,	K).

subtask points Additional	Constraints
1 21 none
2 13 none
3 43
4 23

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	N
lines	2,	…,	N	+	1:	A[i]	B[i]
line	N	+	2:	Q
lines	N	+	3,	…,	N	+	Q	+	2:	M	K[0]	K[1]	…	K[M	-	1]

For	each	question,	the	sample	grader	prints	the	return	value	of	can.

1	/	3

International	Olympiad	in	Informatics	2015
26th	July	-	2nd	August	2015
Almaty,	Kazakhstan
Day	1

boxes
Language:	en-ISC

Boxes	with	souvenirs
The	last	act	of	the	IOI	2015	opening	ceremony	is	in	progress.	During	the
opening	ceremony,	each	team	was	supposed	to	receive	a	box	with	a
souvenir	from	the	host.	However,	all	volunteers	are	so	fascinated	by	the
ceremony	that	they	completely	forgot	about	the	souvenirs.	The	only	person
who	remembers	about	the	souvenirs	is	Aman.	He	is	an	enthusiastic
volunteer	and	he	wants	the	IOI	to	be	perfect,	so	he	wants	to	deliver	all	the
souvenirs	in	the	least	amount	of	time.

The	venue	of	the	opening	ceremony	is	a	circle	divided	into	 	identical
sections.	The	sections	around	the	circle	are	numbered	consecutively	from	
to	 .	That	is,	for	 ,	sections	 	and	 	are	adjacent,	and
also	sections	 	and	 	are	adjacent.	There	are	 	teams	at	the	venue.
Each	team	is	sitting	in	one	of	the	sections.	Each	section	may	contain
arbitrarily	many	teams.	Some	sections	may	even	be	empty.

There	are	 	identical	souvenirs.	Initially,	both	Aman	and	all	of	the
souvenirs	are	in	section	 .	Aman	should	give	one	souvenir	to	each	team,
and	after	delivering	the	last	souvenir	he	must	return	to	section	 .	Note	that
some	teams	may	be	sitting	in	section	0.

At	any	moment,	Aman	can	only	carry	at	most	 	souvenirs.	Aman	must	pick
up	souvenirs	in	section	 ,	and	this	takes	him	no	time.	Each	souvenir	must
be	carried	until	it	is	delivered	to	one	of	the	teams.	Whenever	Aman	carries
one	or	more	souvenirs	and	reaches	a	section	with	a	team	that	has	not
received	a	souvenir	yet,	he	may	give	that	team	one	of	the	souvenirs	he
carries.	This	also	happens	instantly.	The	only	thing	that	takes	time	is
movement.	Aman	can	move	around	the	circular	venue	in	both	directions.
Moving	to	an	adjacent	section	(either	clockwise	or	counterclockwise)	takes
him	exactly	one	second,	regardless	of	how	many	souvenirs	he	carries.

Your	task	is	to	find	the	smallest	number	of	seconds	Aman	needs	to	deliver
all	souvenirs	and	then	return	to	his	initial	position.

Example
In	this	example	we	have	 	teams,	Aman’s	carrying	capacity	is	 ,
and	the	number	of	sections	is	 .	The	teams	are	located	in	sections	1,
2,	and	5.

2	/	3

One	of	the	optimal	solutions	is	shown	in	the	picture	above.	In	his	first	trip
Aman
takes	two	souvenirs,	delivers	one	to	the	team	in	section	2,	then	the	other	to
the	team	in	section	5,	and	finally	he	returns	to	section	0.	This	trip	takes	8
seconds.	In	his	second	trip	Aman	brings	the	remaining	souvenir	to	the	team
in	section	1	and	then	returns	to	section	0.	He	needs	another	2	seconds	to
do	this.	Thus,	the	total	time	is	10	seconds.

Task
You	are	given	 ,	 ,	 ,	and	the	positions	of	all	teams.	Compute	the
smallest	number	of	seconds	Aman	needs	to	deliver	all	the	souvenirs	and	to
return	to	section	 .	You	need	to	implement	the	function	delivery:

delivery(N,	K,	L,	positions) 	—	This	function	will	be	called	by	the
grader	exactly	once.

N:	the	number	of	teams.
K:	the	maximum	number	of	souvenirs	Aman	can	carry	at	the	same
time.
L:	the	number	of	sections	in	the	venue	of	the	opening	ceremony.

positions:	an	array	of	length	 .	positions[0],	...,	positions[N-1]
give	the	section	number	of	all	teams.	The	elements	of	positions
are	in	non-decreasing	order.
The	function	should	return	the	smallest	number	of	seconds	in
which	Aman	can	complete	his	task.

Subtasks

subtask points
1 10
2 10
3 15
4 15
5 20

3	/	3

6 30
subtask points

Sample	grader
The	sample	grader	reads	the	input	in	the	following	format:

line	1:	N	K	L
line	2:	positions[0]	…	positions[N-1]

The	sample	grader	prints	the	return	value	of	delivery.

