Submission details
Task:Lukujono
Sender:rottis
Submission time:2025-10-31 21:06:39 +0200
Language:text
Status:READY
Result:60
Feedback
groupverdictscore
#1ACCEPTED60
Test results
testverdicttimescore
#1ACCEPTED0.00 s60details

Code

# Q = 128
# 548 successful iterations

INCREASE Q INCREASE Q INCREASE Q INCREASE Q # 4^3 = 64
 
#CLEAR S # s <= (x > 0) assume empty
#CLEAR L assume empty
#CLEAR M assume empty
INCREASE M
REPEAT X TIMES (
    REPEAT M TIMES ( REPEAT L TIMES ( CLEAR M INCREASE S ) INCREASE L )
)

PRINT X
REPEAT Q TIMES (
    REPEAT S TIMES ( # skips iterations a lot faster if there are a lot to skip
        REPEAT Q TIMES (
            REPEAT S TIMES (
                REPEAT Q TIMES ( # repeat 4 times 4 times 4 times 2 times: 128 times
                    # if x > 1
                    REPEAT S TIMES (
                    
                        # o: store x / 4
                        CLEAR O
                
                        # a: % 4 == 0
                        # b: % 4 == 1
                        # c: % 4 == 2
                        # d: % 4 == 3
                        # c: pass-through
                        INCREASE A
                        
                        
                        # AD: % 4 = 0
                        # BD: % 4 = 1
                        # AE: % 4 = 2
                        # BE: % 4 = 3
                        REPEAT X TIMES (
                            REPEAT D TIMES ( CLEAR D INCREASE T INCREASE O )
                            REPEAT C TIMES ( CLEAR C INCREASE D )
                            REPEAT B TIMES ( CLEAR B INCREASE C )
                            REPEAT A TIMES ( CLEAR A INCREASE B )
                            REPEAT T TIMES ( CLEAR T INCREASE A )
                        )
                        #DEBUG A DEBUG B DEBUG C DEBUG D DEBUG E DEBUG F DEBUG X DEBUG O
                
                        # x % 4 == 0
                        REPEAT A TIMES (
                            CLEAR A
                            # o is already 0.5x!
                            # x % 4 == 0, we need to print x/2 and store x/4 in O

                            CLEAR X 
                            REPEAT O TIMES ( INCREASE O INCREASE X )
                            PRINT O # x/2 (2o)
                            PRINT X # x/4 (1o)
                            

                            # check x/2 > 1 (for next iteration)
                            CLEAR S # s <= (x > 0)
                            CLEAR L # L is set to 2 after the loop, cannot assume empty
                            #CLEAR M assume empty, if not empty then we shouldnt be inside the loop
                            # Better x > 1 alg!
                            INCREASE M
                            REPEAT X TIMES (
                                REPEAT M TIMES ( REPEAT L TIMES ( CLEAR M INCREASE S ) INCREASE L )
                            )
                        )
                        
                        # x % 4 == 1
                        REPEAT B TIMES (
                            CLEAR B

                            # x = 12o + 4 = x + (2x+1)
                            REPEAT X TIMES ( INCREASE X INCREASE X )
                            INCREASE X

                            PRINT X

                            CLEAR X

                            # O = 6o + 2; X = 3o + 1
                            REPEAT O TIMES (
                                INCREASE O INCREASE O INCREASE O INCREASE O INCREASE O 
                                INCREASE X INCREASE X INCREASE X
                            )
                            INCREASE O INCREASE O
                            INCREASE X
                            
                            PRINT O
                            PRINT X

                            # O != 0?
                            CLEAR S
                            
                            REPEAT O TIMES ( CLEAR S INCREASE S )
                        )

                        # x % 4 == 2
                        REPEAT C TIMES (
                            CLEAR C

                            CLEAR Z # 2o + 1
                            REPEAT O TIMES ( INCREASE Z INCREASE Z )
                            INCREASE Z
                            
                            PRINT Z # 2o + 1


                            # O != 0?
                            CLEAR S

                            REPEAT O TIMES ( CLEAR T CLEAR S INCREASE S )
                            
                            REPEAT S TIMES (
                                REPEAT Z TIMES ( INCREASE X )
                                INCREASE X

                                PRINT X # 6o + 4

                                CLEAR X

                                REPEAT O TIMES ( INCREASE X INCREASE X INCREASE X )
                                INCREASE X INCREASE X

                                PRINT X # 3o + 2
                            )
                        )

                        # x % 4 == 3
                        REPEAT D TIMES (
                            CLEAR D

                            # Z = 3x+1 = 12o + 10
                            CLEAR Z
                            REPEAT X TIMES ( INCREASE Z INCREASE Z INCREASE Z )
                            INCREASE Z

                            PRINT Z # 3x + 1

                            # X = 3x+1 / 2 = x + 2o + 1
                            REPEAT O TIMES ( INCREASE X INCREASE X )
                            INCREASE X INCREASE X
                            
                            PRINT X # (3x + 1) / 2
                            
                            # Z = 12o + 10 + (6o + 6)
                            REPEAT O TIMES ( INCREASE Z INCREASE Z INCREASE Z INCREASE Z INCREASE Z INCREASE Z )
                            INCREASE Z INCREASE Z INCREASE Z INCREASE Z INCREASE Z INCREASE Z 

                            PRINT Z # 18o + 16

                            # X = 6o + 5 + (3o + 3)
                            REPEAT O TIMES ( INCREASE X INCREASE X INCREASE X )
                            INCREASE X INCREASE X INCREASE X
                            
                            PRINT X # 9o + 8
                        )
                    )
                ) 
            )
        )
    ) 
)

Test details

Test 1 (public)

Verdict: ACCEPTED

input
(empty)

correct output
(empty)

user output
# Q = 128
# 548 successful iterations

INCREASE Q INCREASE Q INCREASE...

Feedback: 600 tests processed (command limit exceeded)