| Task: | Download Speed |
| Sender: | discape |
| Submission time: | 2025-10-10 15:44:27 +0300 |
| Language: | C++ (C++20) |
| Status: | READY |
| Result: | ACCEPTED |
| test | verdict | time | |
|---|---|---|---|
| #1 | ACCEPTED | 0.00 s | details |
| #2 | ACCEPTED | 0.00 s | details |
| #3 | ACCEPTED | 0.00 s | details |
| #4 | ACCEPTED | 0.00 s | details |
| #5 | ACCEPTED | 0.01 s | details |
| #6 | ACCEPTED | 0.00 s | details |
| #7 | ACCEPTED | 0.01 s | details |
| #8 | ACCEPTED | 0.00 s | details |
| #9 | ACCEPTED | 0.00 s | details |
| #10 | ACCEPTED | 0.00 s | details |
| #11 | ACCEPTED | 0.00 s | details |
| #12 | ACCEPTED | 0.00 s | details |
Code
#include <bits/stdc++.h>
using namespace std;
// clang-format off
#define fastio \
ios_base::sync_with_stdio(false); \
cin.tie(NULL); \
cout.tie(NULL)
#ifdef DO_DBG
template<typename A, typename B> ostream& operator<<(ostream &os, const pair<A, B> &p) { return os << '(' << p.first << ", " << p.second << ')'; }
template<typename T_container, typename T = typename enable_if<!is_same<T_container, string>::value, typename T_container::value_type>::type> ostream& operator<<(ostream &os, const T_container &v) { os << '{'; string sep; for (const T &x : v) os << sep << x, sep = ", "; return os << '}'; }
void dbg_out() { cerr << endl; }
template<typename Head, typename... Tail> void dbg_out(Head H, Tail... T) { cerr << ' ' << H; dbg_out(T...); }
#define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
template <typename T> using v = vector<T>;
template <typename T> using us = unordered_set<T>;
template <typename K, typename V> using um = unordered_map<K, V>;
template <typename K, typename V> using p = pair<K, V>;
template <typename T> using pq = priority_queue<T>;
template <typename T> using nl = numeric_limits<T>;
constexpr int MOD = 1e9 + 7;
constexpr int INF = 1e9;
constexpr ld EPS = 1e-9;
// fancy
#define loopi(n) for (auto i : std::views::iota(0, n))
#define loopj(n) for (int j = 0; j < n; j++)
#define loopk(n) for (int k = 0; k < n; k++)
#define loopz(n) for (int z = 0; z < n; z++)
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define sq(x) ((x) * (x))
template <typename... Args> void read(Args&... args) { ((cin >> args), ...); }
#define d(...) int __VA_ARGS__; read(__VA_ARGS__);
#define dv(x, n) vector<int> x(n); for (int i = 0; i < n; i++) cin >> x[i];
#define dvl(x, n) vector<long long> x(n); for (int i = 0; i < n; i++) cin >> x[i];
#define dvd(x, n) vector<double> x(n); for (int i = 0; i < n; i++) cin >> x[i];
template <typename T> struct Mat {
int n, m;
std::vector<T> a;
Mat(int n, int m, T val = T()) : n(n), m(m), a(n * m, val) {}
T &operator()(int i, int j) { return a[i * m + j]; }
const T &operator()(int i, int j) const { return a[i * m + j]; }
};
// clang-format on
template <class F> struct y_combinator {
F f;
template <class... Args> decltype(auto) operator()(Args &&...args) const {
return f(*this, std::forward<Args>(args)...);
}
};
struct edge {
int to, w, rev;
};
int main() {
fastio;
d(n, m);
v<v<edge>> adj(n);
ll threshold = 0;
while (m--) {
d(a, b, c);
a--;
b--;
threshold += c;
adj[a].emplace_back(b, c, adj[b].size());
// reverse edges for the ford-fulkerson algorithm
adj[b].emplace_back(a, 0, adj[a].size() - 1);
// the last field, rev is an optimization so we dont need to find the
// reverse edges with find_if
}
int found_min_w = 0;
ll total_flow = 0;
do {
v<bool> vis(n);
// if we just want to calculate min_w we could do bottom up
// but since we want to know the min_flow before bubbling up
// (because we want to decrease w) we pass the flow from the top
// to the bottom
// this also allows us to simplify the base case a bit, since we can recurse
// into the last node
found_min_w = y_combinator([&](auto dfs, int node, int flow_td) -> int {
if (node == n - 1)
return flow_td;
vis[node] = true;
for (auto &[c, w, rev] : adj[node]) {
if (w >= threshold && !vis[c]) {
auto new_flow = dfs(c, min(w, flow_td));
if (new_flow) {
// we found a path
// we know new_flow is the minimum weight, since
// w was considered for each edge when recursing top down
w -= new_flow;
// increment the reverse edge
// find_if(all(adj[c]), [node](auto &p) {
// return p.first == node;
// })->second += new_flow;
adj[c][rev].w += new_flow;
return new_flow;
}
}
}
return 0;
})(0, nl<int>::max());
total_flow += found_min_w;
if (!found_min_w)
threshold /= 2;
// scaling algorithm ^
} while (threshold);
cout << total_flow << "\n";
}
Test details
Test 1
Verdict: ACCEPTED
| input |
|---|
| 4 3 1 2 5 2 3 3 3 4 6 |
| correct output |
|---|
| 3 |
| user output |
|---|
| 3 |
Test 2
Verdict: ACCEPTED
| input |
|---|
| 4 5 1 2 1 1 3 1 2 3 1 2 4 1 ... |
| correct output |
|---|
| 2 |
| user output |
|---|
| 2 |
Test 3
Verdict: ACCEPTED
| input |
|---|
| 4 5 1 2 1000000000 1 3 1000000000 2 3 1 2 4 1000000000 ... |
| correct output |
|---|
| 2000000000 |
| user output |
|---|
| 2000000000 |
Test 4
Verdict: ACCEPTED
| input |
|---|
| 2 1 2 1 100 |
| correct output |
|---|
| 0 |
| user output |
|---|
| 0 |
Test 5
Verdict: ACCEPTED
| input |
|---|
| 2 1000 1 2 1000000000 1 2 1000000000 1 2 1000000000 1 2 1000000000 ... |
| correct output |
|---|
| 1000000000000 |
| user output |
|---|
| 1000000000000 |
Test 6
Verdict: ACCEPTED
| input |
|---|
| 500 998 1 2 54 1 3 59 1 4 83 2 5 79 ... |
| correct output |
|---|
| 60 |
| user output |
|---|
| 60 |
Test 7
Verdict: ACCEPTED
| input |
|---|
| 500 998 1 2 530873053 1 3 156306296 1 4 478040476 3 5 303609600 ... |
| correct output |
|---|
| 1093765123 |
| user output |
|---|
| 1093765123 |
Test 8
Verdict: ACCEPTED
| input |
|---|
| 2 1 1 2 1 |
| correct output |
|---|
| 1 |
| user output |
|---|
| 1 |
Test 9
Verdict: ACCEPTED
| input |
|---|
| 4 5 1 2 3 2 4 2 1 3 4 3 4 5 ... |
| correct output |
|---|
| 6 |
| user output |
|---|
| 6 |
Test 10
Verdict: ACCEPTED
| input |
|---|
| 4 5 1 2 1 1 3 2 3 2 1 2 4 2 ... |
| correct output |
|---|
| 3 |
| user output |
|---|
| 3 |
Test 11
Verdict: ACCEPTED
| input |
|---|
| 10 999 1 2 1000000000 1 2 1000000000 1 2 1000000000 1 2 1000000000 ... |
| correct output |
|---|
| 111000000000 |
| user output |
|---|
| 111000000000 |
Test 12
Verdict: ACCEPTED
| input |
|---|
| 7 9 1 2 1 1 3 1 1 4 1 2 5 1 ... |
| correct output |
|---|
| 2 |
| user output |
|---|
| 2 |
