Submission details
Task:Longest route
Sender:aalto25h_006
Submission time:2025-10-22 17:22:50 +0300
Language:Python3 (PyPy3)
Status:READY
Result:
Test results
testverdicttime
#10.04 sdetails
#20.04 sdetails
#30.04 sdetails
#4ACCEPTED0.04 sdetails
#5ACCEPTED0.04 sdetails
#6ACCEPTED0.61 sdetails
#70.66 sdetails
#80.68 sdetails
#90.66 sdetails
#100.65 sdetails
#110.30 sdetails
#120.85 sdetails
#13ACCEPTED0.04 sdetails
#14ACCEPTED0.04 sdetails
#150.80 sdetails
#16ACCEPTED0.05 sdetails
#170.80 sdetails
#18ACCEPTED0.30 sdetails
#190.04 sdetails
#200.76 sdetails
#210.04 sdetails

Code

n, m = [int(x) for x in input().split()]
graph = [[] for _ in range(n)]
for _ in range(m):
    a, b = [int(x) for x in input().split()]
    graph[b-1].append(a-1)

order = []
in_process = set([])
processed = set([])
impossible = False

def dfs_rec(x):
    global impossible
    
    in_process.add(x)
    for c in graph[x]:
        if c in in_process:
            impossible = True
            break
        if c not in processed:
            dfs_rec(c)
    order.append(x)
    in_process.remove(x)
    processed.add(x)

for i in range(n):
    if i not in processed:
        dfs_rec(i)

if impossible:
    print('IMPOSSIBLE')
else:
    nbr_nodes = [float('inf')] * n
    nbr_nodes[0] = 1
    nodes = [[] for _ in range(n)]

    for i, node in enumerate(order):
        maxi = 0
        chosen_node = -1
        for parent in graph[node]:
            if nbr_nodes[parent]+1 > maxi:
                maxi = nbr_nodes[parent]+1
                chosen_node = parent 
        if maxi != 0:
            nbr_nodes[node] = maxi
            nodes[node] = nodes[parent].copy()
            nodes[node].append(parent)

    if nbr_nodes[n-1] == float('inf'):
        print('IMPOSSIBLE')
    else:
        print(nbr_nodes[n-1])
        for node in nodes[n-1]:
            print(node+1, end=' ')
        print(n)

Test details

Test 1

Verdict:

input
10 10
2 6
1 2
4 6
5 6
...

correct output
5
1 2 5 6 10 

user output
IMPOSSIBLE

Test 2

Verdict:

input
10 10
3 9
6 5
6 9
2 8
...

correct output
4
1 2 8 10 

user output
IMPOSSIBLE

Test 3

Verdict:

input
10 10
5 10
4 10
8 7
7 10
...

correct output
3
1 4 10 

user output
IMPOSSIBLE

Test 4

Verdict: ACCEPTED

input
10 10
8 10
2 6
2 10
7 10
...

correct output
IMPOSSIBLE

user output
IMPOSSIBLE

Test 5

Verdict: ACCEPTED

input
10 10
8 4
2 10
1 3
4 9
...

correct output
5
1 8 7 2 10 

user output
5
1 8 4 9 10

Test 6

Verdict: ACCEPTED

input
100000 200000
86085 57043
45527 29537
41919 84699
95993 82082
...

correct output
IMPOSSIBLE

user output
IMPOSSIBLE

Test 7

Verdict:

input
100000 200000
10961 53490
59843 36636
40674 66772
32618 41570
...

correct output
31
1 37239 44082 21537 90572 7332...

user output
IMPOSSIBLE

Test 8

Verdict:

input
100000 200000
87375 76468
38855 27547
49415 83191
38572 1524
...

correct output
35
1 91343 59014 56722 34054 3875...

user output
IMPOSSIBLE

Test 9

Verdict:

input
100000 200000
17973 70097
19982 80323
96486 2404
75650 63274
...

correct output
36
1 25685 90292 59380 91058 2663...

user output
IMPOSSIBLE

Test 10

Verdict:

input
100000 200000
74343 53088
97443 7885
64807 58252
9374 33312
...

correct output
28
1 26390 15278 11333 48479 6881...

user output
IMPOSSIBLE

Test 11

Verdict:

input
100000 199998
1 100000
1 100000
2 100000
2 100000
...

correct output
2
1 100000 

user output
IMPOSSIBLE

Test 12

Verdict:

input
100000 199998
1 2
1 2
2 3
2 3
...

correct output
100000
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

user output
(empty)

Test 13

Verdict: ACCEPTED

input
2 1
1 2

correct output
2
1 2 

user output
2
1 2

Test 14

Verdict: ACCEPTED

input
5 4
1 2
2 3
3 4
1 5

correct output
2
1 5 

user output
2
1 5

Test 15

Verdict:

input
99999 149997
1 3
3 5
5 7
7 9
...

correct output
99999
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

user output
(empty)

Test 16

Verdict: ACCEPTED

input
3 2
1 3
3 2

correct output
2
1 3 

user output
2
1 3

Test 17

Verdict:

input
99999 149997
1 2
2 4
4 6
6 8
...

correct output
99999
1 3 2 5 4 7 6 9 8 11 10 13 12 ...

user output
(empty)

Test 18

Verdict: ACCEPTED

input
100000 200000
1 2
1 3
1 4
1 5
...

correct output
IMPOSSIBLE

user output
IMPOSSIBLE

Test 19

Verdict:

input
5 4
2 1
3 1
1 4
1 5

correct output
2
1 5 

user output
IMPOSSIBLE

Test 20

Verdict:

input
100000 99999
99999 100000
99998 99999
99997 99998
99996 99997
...

correct output
100000
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

user output
(empty)

Test 21

Verdict:

input
4 4
3 1
3 4
1 2
2 4

correct output
3
1 2 4 

user output
IMPOSSIBLE