CSES - Aalto Competitive Programming 2024 - wk10 - Wed - Results
Submission details
Task:Closest points
Sender:ashum-ta
Submission time:2024-11-13 17:25:13 +0200
Language:C++ (C++20)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2--details
#3ACCEPTED0.30 sdetails
#4ACCEPTED0.24 sdetails
#5ACCEPTED0.00 sdetails
#6ACCEPTED0.18 sdetails
#7ACCEPTED0.00 sdetails
#8ACCEPTED0.00 sdetails
#90.00 sdetails
#10--details
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.00 sdetails
#13--details
#14ACCEPTED0.00 sdetails
#15ACCEPTED0.00 sdetails
#16ACCEPTED0.18 sdetails
#17--details
#18ACCEPTED0.00 sdetails

Compiler report

input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)':
input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  137 |         for (int i = 1; i < path_reversed.size(); i++)
      |                         ~~^~~~~~~~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>
 
#define REP(i, a, b) for (int i = a; i < b; i++)
 
// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val))              // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val
 
using namespace std;
 
void print_vector(vector<int> &x)
{
    for (int v : x)
    {
        cout << v << " ";
    }
    cout << "\n";
}
 
void print_matrix(vector<vector<int>> &matrix)
{
    cout << "\n"
         << "----------------" << "\n";
    for (vector<int> row : matrix)
    {
        print_vector(row);
    }
    cout << "\n"
         << "----------------" << "\n";
}
 
int calc_max_digit(int n)
{
    int max_digit = 0;
    while (n > 0 && max_digit < 9)
    {
        int digit = n % 10;
        if (digit > max_digit)
        {
            max_digit = digit;
        }
        n /= 10;
    }
    return max_digit;
}
 
// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
    int n = edges.size();
    vector<bool> processed(n, false);
    vector<ll> distances(n, LLONG_MAX);
    distances[start_point] = 0;
    priority_queue<pair<ll, int>> pq;
    pq.push({0, start_point});
    while (!pq.empty())
    {
        int curr = pq.top().second;
        pq.pop();
        if (processed[curr])
        {
            continue;
        }
        processed[curr] = true;
        ll distance = distances[curr];
 
        for (pair<int, int> edge : edges[curr])
        {
 
            if (distance + edge.second < distances[edge.first])
            {
                distances[edge.first] = distance + edge.second;
                pq.push({-distances[edge.first], edge.first});
            }
        }
    }
    return distances;
}
 
int bfs_edmondson_karp(const vector<vector<ll>> &connections,
                       const int source, const int target, vector<int> &path_reversed)
{
    int n = connections.size();
 
    queue<pair<int, ll>> queue;
    queue.push({source, LLONG_MAX});
    vector<int> predecessor(n, -2);
    predecessor[source] = -1;
 
    while (!queue.empty())
    {
        int current = queue.front().first;
        ll current_bottleneck = queue.front().second;
        queue.pop();
 
        if (current == target)
        {
            while (current != -1)
            {
                path_reversed.push_back(current);
                current = predecessor[current];
            }
            return current_bottleneck;
        }
 
        for (int edge_end = 0; edge_end < n; edge_end++)
        {
            ll edge_cap = connections[current][edge_end];
            if (edge_cap > 0 && predecessor[edge_end] == -2)
            {
                predecessor[edge_end] = current;
                queue.push({edge_end, min(current_bottleneck, edge_cap)});
            }
        }
    }
 
    return -1;
}
 
ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
    ll flow = 0;
 
    while (true)
    {
        vector<int> path_reversed;
        int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);
 
        if (path_capacity < 0)
        {
            break;
        }
 
        flow += path_capacity;
        for (int i = 1; i < path_reversed.size(); i++)
        {
            int edge_end = path_reversed[i - 1];
            int edge_start = path_reversed[i];
            // reduce forwards edge
            residual_graph[edge_start][edge_end] -= path_capacity;
            assert(residual_graph[edge_start][edge_end] >= 0);
            // add to backwards edge
            residual_graph[edge_end][edge_start] += path_capacity;
            assert(residual_graph[edge_end][edge_start] >= 0);
        }
    }
    return flow;
}
 
bool dfs(int n, const vector<vector<int>> snakes, vector<bool> &visited, vector<int> path, int start, int target)
{
    if (start == target)
    {
        path.push_back(target);
        return true;
    }
    for (int i = n; n >= 1; n--)
    {
        if (!visited[i] && !snakes[start][i])
        {
            if (dfs(n, snakes, visited, path, i, target))
            {
                path.push_back(start);
                return true;
            }
        }
    }
    return false;
}
 
vector<int> z(const string &s)
{
    int n = s.size();
    vector<int> z(n);
    z[0] = n;
    int x = 0, y = 0;
    for (int k = 1; k < n; k++)
    {
        z[k] = max(0, min(z[k - x], y - k + 1));
        while (k + z[k] < n && s[z[k]] == s[k + z[k]])
        {
            // while there is a potential longer match and characters coincide
            x = k;
            y = k + z[k];
            z[k]++;
        }
    }
    return z;
}
 
typedef long long C;
typedef complex<C> P;
#define X real()
#define Y imag()
 
C cross(P a, P b)
{
    return (conj(a) * b).imag();
}
 
bool is_between(C a, C b, C c)
{
    return min(a, b) <= c && c <= max(a, b);
}
 
bool check_intersect(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4)
{
    P p1 = P(x1, y1);
    P p2 = P(x2, y2);
    P p3 = P(x3, y3);
    P p4 = P(x4, y4);
 
    if (p1 == p3 || p1 == p4 || p2 == p3 || p2 == p4)
    {
        return true;
    }
 
    if (cross(p2 - p1, p3 - p1) == 0 && cross(p2 - p1, p4 - p1) == 0)
    {
        return (is_between(p1.real(), p2.real(), p3.real()) && is_between(p1.imag(), p2.imag(), p3.imag())) ||
               (is_between(p1.real(), p2.real(), p4.real()) && is_between(p1.imag(), p2.imag(), p4.imag())) ||
               (is_between(p3.real(), p4.real(), p1.real()) && is_between(p3.imag(), p4.imag(), p1.imag())) ||
               (is_between(p3.real(), p4.real(), p2.real()) && is_between(p3.imag(), p4.imag(), p2.imag()));
    }
 
    C cross1 = cross(p2 - p1, p3 - p1);
    C cross2 = cross(p2 - p1, p4 - p1);
    C cross3 = cross(p4 - p3, p1 - p3);
    C cross4 = cross(p4 - p3, p2 - p3);
 
    return (cross1 * cross2 < 0) && (cross3 * cross4 < 0);
}
bool onSegment(P p, P a, P b)
{
    // Calculate cross product
    C cross = (b.X - a.X) * (p.Y - a.Y) - (b.Y - a.Y) * (p.X - a.X);
    if (cross != 0)
        return false;
 
    // Check if p is within the bounding rectangle of a and b
    C minX = min(a.X, b.X);
    C maxX = max(a.X, b.X);
    C minY = min(a.Y, b.Y);
    C maxY = max(a.Y, b.Y);
 
    if (p.X >= minX && p.X <= maxX && p.Y >= minY && p.Y <= maxY)
        return true;
 
    return false;
}
 
ll distance(pair<int, int> a, pair<int, int> b)
{
    ll delta_x = (ll)b.first - a.first;
    ll delta_y = (ll)b.second - a.second;
    return delta_x * delta_x + delta_y * delta_y;
}
 
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
 
    vector<pair<int, int>> points(n);
    for (int i = 0; i < n; i++)
    {
        int x, y;
        cin >> x >> y;
        points[i] = {x, y};
    }
 
    sort(points.begin(), points.end());
 
    // cout << points[0].first << "," << points[0].second << " - " << points[1].first << endl;
 
    ll minDistance = -1;
 
    set<pair<ll, ll>> activePoints;
    int l = 0;
 
    for (int i = 0; i < n; i++)
    {
        pair<ll, ll> currPoint = points[i];
        // cout << "Processing " << i << endl;
        while (minDistance != -1 && currPoint.first - points[l].first > minDistance)
        {
            activePoints.erase(points[l]);
            l++;
        }
        // cout << "Finished pruning with" << i << endl;
 
        ll lower_bound = minDistance != -1 ? currPoint.second - sqrt(minDistance) : LLONG_MIN;
        ll upper_bound = minDistance != -1 ? currPoint.second + sqrt(minDistance) : LLONG_MAX;
        auto lower = activePoints.lower_bound({lower_bound, -numeric_limits<int>::max()});
        auto upper = activePoints.upper_bound({upper_bound, numeric_limits<int>::max()});
 
        // cout << "Got Bounds " << i << endl;
 
        for (auto it = lower; it != upper; it++)
        {
            // cout << it->first << " in Set" << endl;
            double dist = distance({currPoint.second, currPoint.first}, {it->first, it->second});
            if (minDistance == -1 || dist < minDistance)
            {
                minDistance = dist;
                // cout << "Change minDistance to " << dist << endl;
            }
        }
        // cout << "Finished region" << i << endl;
 
        activePoints.insert({currPoint.second, currPoint.first});
        // cout << "Finished Processing " << i << endl;
    }
 
    cout << minDistance << endl;
}

Test details

Test 1

Verdict: ACCEPTED

input
100
58 36
81 -7
46 49
87 -58
...

correct output
1

user output
1

Test 2

Verdict:

input
200000
-222 -705
277 680
-436 561
528 -516
...

correct output
1

user output
(empty)

Test 3

Verdict: ACCEPTED

input
200000
-464738043 865360844
465231470 129093134
-276549869 -21946314
111055008 -48821736
...

correct output
25413170

user output
25413170

Test 4

Verdict: ACCEPTED

input
200000
1 513001000
2 689002000
3 785003000
4 799004000
...

correct output
1000000

user output
1000000

Test 5

Verdict: ACCEPTED

input
4
0 0
0 3
3 0
1 1

correct output
2

user output
2

Test 6

Verdict: ACCEPTED

input
200000
1 0
1 1
1 2
1 3
...

correct output
1

user output
1

Test 7

Verdict: ACCEPTED

input
4
1 2
10 3
3 5
8 5

correct output
8

user output
8

Test 8

Verdict: ACCEPTED

input
4
10 6
4 10
8 3
2 3

correct output
13

user output
13

Test 9

Verdict:

input
2
-999999999 -999999999
999999999 999999999

correct output
7999999984000000008

user output
7999999984000000000

Test 10

Verdict:

input
200000
0 1
1 1
2 1
3 1
...

correct output
1

user output
(empty)

Test 11

Verdict: ACCEPTED

input
8
1 10000
-1 -10000
2 0
-2 0
...

correct output
16

user output
16

Test 12

Verdict: ACCEPTED

input
3
-1000000000 -1000000000
1000000000 1000000000
0 0

correct output
2000000000000000000

user output
2000000000000000000

Test 13

Verdict:

input
199999
1 1
2 1
3 1
4 1
...

correct output
1

user output
(empty)

Test 14

Verdict: ACCEPTED

input
4
0 0
5 8
6 1
10000 0

correct output
37

user output
37

Test 15

Verdict: ACCEPTED

input
435
-842 -199
-480 798
-176 -406
792 608
...

correct output
2

user output
2

Test 16

Verdict: ACCEPTED

input
200000
1 0
1 2
1 4
1 6
...

correct output
4

user output
4

Test 17

Verdict:

input
200000
0 1
2 1
4 1
6 1
...

correct output
4

user output
(empty)

Test 18

Verdict: ACCEPTED

input
3
-1000000000 -1000000000
1000000000 1000000000
1000000000 -1000000000

correct output
4000000000000000000

user output
4000000000000000000