CSES - Aalto Competitive Programming 2024 - wk10 - Wed - Results
Submission details
Task:Closest points
Sender:ashum-ta
Submission time:2024-11-13 17:25:13 +0200
Language:C++ (C++20)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2--details
#3ACCEPTED0.30 sdetails
#4ACCEPTED0.24 sdetails
#5ACCEPTED0.00 sdetails
#6ACCEPTED0.18 sdetails
#7ACCEPTED0.00 sdetails
#8ACCEPTED0.00 sdetails
#90.00 sdetails
#10--details
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.00 sdetails
#13--details
#14ACCEPTED0.00 sdetails
#15ACCEPTED0.00 sdetails
#16ACCEPTED0.18 sdetails
#17--details
#18ACCEPTED0.00 sdetails

Compiler report

input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)':
input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  137 |         for (int i = 1; i < path_reversed.size(); i++)
      |                         ~~^~~~~~~~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>
#define REP(i, a, b) for (int i = a; i < b; i++)
// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val
using namespace std;
void print_vector(vector<int> &x)
{
for (int v : x)
{
cout << v << " ";
}
cout << "\n";
}
void print_matrix(vector<vector<int>> &matrix)
{
cout << "\n"
<< "----------------" << "\n";
for (vector<int> row : matrix)
{
print_vector(row);
}
cout << "\n"
<< "----------------" << "\n";
}
int calc_max_digit(int n)
{
int max_digit = 0;
while (n > 0 && max_digit < 9)
{
int digit = n % 10;
if (digit > max_digit)
{
max_digit = digit;
}
n /= 10;
}
return max_digit;
}
// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
int n = edges.size();
vector<bool> processed(n, false);
vector<ll> distances(n, LLONG_MAX);
distances[start_point] = 0;
priority_queue<pair<ll, int>> pq;
pq.push({0, start_point});
while (!pq.empty())
{
int curr = pq.top().second;
pq.pop();
if (processed[curr])
{
continue;
}
processed[curr] = true;
ll distance = distances[curr];
for (pair<int, int> edge : edges[curr])
{
if (distance + edge.second < distances[edge.first])
{
distances[edge.first] = distance + edge.second;
pq.push({-distances[edge.first], edge.first});
}
}
}
return distances;
}
int bfs_edmondson_karp(const vector<vector<ll>> &connections,
const int source, const int target, vector<int> &path_reversed)
{
int n = connections.size();
queue<pair<int, ll>> queue;
queue.push({source, LLONG_MAX});
vector<int> predecessor(n, -2);
predecessor[source] = -1;
while (!queue.empty())
{
int current = queue.front().first;
ll current_bottleneck = queue.front().second;
queue.pop();
if (current == target)
{
while (current != -1)
{
path_reversed.push_back(current);
current = predecessor[current];
}
return current_bottleneck;
}
for (int edge_end = 0; edge_end < n; edge_end++)
{
ll edge_cap = connections[current][edge_end];
if (edge_cap > 0 && predecessor[edge_end] == -2)
{
predecessor[edge_end] = current;
queue.push({edge_end, min(current_bottleneck, edge_cap)});
}
}
}
return -1;
}
ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
ll flow = 0;
while (true)
{
vector<int> path_reversed;
int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);
if (path_capacity < 0)
{
break;
}
flow += path_capacity;
for (int i = 1; i < path_reversed.size(); i++)
{
int edge_end = path_reversed[i - 1];
int edge_start = path_reversed[i];
// reduce forwards edge
residual_graph[edge_start][edge_end] -= path_capacity;
assert(residual_graph[edge_start][edge_end] >= 0);
// add to backwards edge
residual_graph[edge_end][edge_start] += path_capacity;
assert(residual_graph[edge_end][edge_start] >= 0);
}
}
return flow;
}
bool dfs(int n, const vector<vector<int>> snakes, vector<bool> &visited, vector<int> path, int start, int target)
{
if (start == target)
{
path.push_back(target);
return true;
}
for (int i = n; n >= 1; n--)
{
if (!visited[i] && !snakes[start][i])
{
if (dfs(n, snakes, visited, path, i, target))
{
path.push_back(start);
return true;
}
}
}
return false;
}
vector<int> z(const string &s)
{
int n = s.size();
vector<int> z(n);
z[0] = n;
int x = 0, y = 0;
for (int k = 1; k < n; k++)
{
z[k] = max(0, min(z[k - x], y - k + 1));
while (k + z[k] < n && s[z[k]] == s[k + z[k]])
{
// while there is a potential longer match and characters coincide
x = k;
y = k + z[k];
z[k]++;
}
}
return z;
}
typedef long long C;
typedef complex<C> P;
#define X real()
#define Y imag()
C cross(P a, P b)
{
return (conj(a) * b).imag();
}
bool is_between(C a, C b, C c)
{
return min(a, b) <= c && c <= max(a, b);
}
bool check_intersect(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4)
{
P p1 = P(x1, y1);
P p2 = P(x2, y2);
P p3 = P(x3, y3);
P p4 = P(x4, y4);
if (p1 == p3 || p1 == p4 || p2 == p3 || p2 == p4)
{
return true;
}
if (cross(p2 - p1, p3 - p1) == 0 && cross(p2 - p1, p4 - p1) == 0)
{
return (is_between(p1.real(), p2.real(), p3.real()) && is_between(p1.imag(), p2.imag(), p3.imag())) ||
(is_between(p1.real(), p2.real(), p4.real()) && is_between(p1.imag(), p2.imag(), p4.imag())) ||
(is_between(p3.real(), p4.real(), p1.real()) && is_between(p3.imag(), p4.imag(), p1.imag())) ||
(is_between(p3.real(), p4.real(), p2.real()) && is_between(p3.imag(), p4.imag(), p2.imag()));
}
C cross1 = cross(p2 - p1, p3 - p1);
C cross2 = cross(p2 - p1, p4 - p1);
C cross3 = cross(p4 - p3, p1 - p3);
C cross4 = cross(p4 - p3, p2 - p3);
return (cross1 * cross2 < 0) && (cross3 * cross4 < 0);
}
bool onSegment(P p, P a, P b)
{
// Calculate cross product
C cross = (b.X - a.X) * (p.Y - a.Y) - (b.Y - a.Y) * (p.X - a.X);
if (cross != 0)
return false;
// Check if p is within the bounding rectangle of a and b
C minX = min(a.X, b.X);
C maxX = max(a.X, b.X);
C minY = min(a.Y, b.Y);
C maxY = max(a.Y, b.Y);
if (p.X >= minX && p.X <= maxX && p.Y >= minY && p.Y <= maxY)
return true;
return false;
}
ll distance(pair<int, int> a, pair<int, int> b)
{
ll delta_x = (ll)b.first - a.first;
ll delta_y = (ll)b.second - a.second;
return delta_x * delta_x + delta_y * delta_y;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<pair<int, int>> points(n);
for (int i = 0; i < n; i++)
{
int x, y;
cin >> x >> y;
points[i] = {x, y};
}
sort(points.begin(), points.end());
// cout << points[0].first << "," << points[0].second << " - " << points[1].first << endl;
ll minDistance = -1;
set<pair<ll, ll>> activePoints;
int l = 0;
for (int i = 0; i < n; i++)
{
pair<ll, ll> currPoint = points[i];
// cout << "Processing " << i << endl;
while (minDistance != -1 && currPoint.first - points[l].first > minDistance)
{
activePoints.erase(points[l]);
l++;
}
// cout << "Finished pruning with" << i << endl;
ll lower_bound = minDistance != -1 ? currPoint.second - sqrt(minDistance) : LLONG_MIN;
ll upper_bound = minDistance != -1 ? currPoint.second + sqrt(minDistance) : LLONG_MAX;
auto lower = activePoints.lower_bound({lower_bound, -numeric_limits<int>::max()});
auto upper = activePoints.upper_bound({upper_bound, numeric_limits<int>::max()});
// cout << "Got Bounds " << i << endl;
for (auto it = lower; it != upper; it++)
{
// cout << it->first << " in Set" << endl;
double dist = distance({currPoint.second, currPoint.first}, {it->first, it->second});
if (minDistance == -1 || dist < minDistance)
{
minDistance = dist;
// cout << "Change minDistance to " << dist << endl;
}
}
// cout << "Finished region" << i << endl;
activePoints.insert({currPoint.second, currPoint.first});
// cout << "Finished Processing " << i << endl;
}
cout << minDistance << endl;
}

Test details

Test 1

Verdict: ACCEPTED

input
100
58 36
81 -7
46 49
87 -58
...

correct output
1

user output
1

Test 2

Verdict:

input
200000
-222 -705
277 680
-436 561
528 -516
...

correct output
1

user output
(empty)

Test 3

Verdict: ACCEPTED

input
200000
-464738043 865360844
465231470 129093134
-276549869 -21946314
111055008 -48821736
...

correct output
25413170

user output
25413170

Test 4

Verdict: ACCEPTED

input
200000
1 513001000
2 689002000
3 785003000
4 799004000
...

correct output
1000000

user output
1000000

Test 5

Verdict: ACCEPTED

input
4
0 0
0 3
3 0
1 1

correct output
2

user output
2

Test 6

Verdict: ACCEPTED

input
200000
1 0
1 1
1 2
1 3
...

correct output
1

user output
1

Test 7

Verdict: ACCEPTED

input
4
1 2
10 3
3 5
8 5

correct output
8

user output
8

Test 8

Verdict: ACCEPTED

input
4
10 6
4 10
8 3
2 3

correct output
13

user output
13

Test 9

Verdict:

input
2
-999999999 -999999999
999999999 999999999

correct output
7999999984000000008

user output
7999999984000000000

Test 10

Verdict:

input
200000
0 1
1 1
2 1
3 1
...

correct output
1

user output
(empty)

Test 11

Verdict: ACCEPTED

input
8
1 10000
-1 -10000
2 0
-2 0
...

correct output
16

user output
16

Test 12

Verdict: ACCEPTED

input
3
-1000000000 -1000000000
1000000000 1000000000
0 0

correct output
2000000000000000000

user output
2000000000000000000

Test 13

Verdict:

input
199999
1 1
2 1
3 1
4 1
...

correct output
1

user output
(empty)

Test 14

Verdict: ACCEPTED

input
4
0 0
5 8
6 1
10000 0

correct output
37

user output
37

Test 15

Verdict: ACCEPTED

input
435
-842 -199
-480 798
-176 -406
792 608
...

correct output
2

user output
2

Test 16

Verdict: ACCEPTED

input
200000
1 0
1 2
1 4
1 6
...

correct output
4

user output
4

Test 17

Verdict:

input
200000
0 1
2 1
4 1
6 1
...

correct output
4

user output
(empty)

Test 18

Verdict: ACCEPTED

input
3
-1000000000 -1000000000
1000000000 1000000000
1000000000 -1000000000

correct output
4000000000000000000

user output
4000000000000000000