Task: | Point in Polygon |
Sender: | fabiank |
Submission time: | 2024-11-11 17:02:13 +0200 |
Language: | C++ (C++17) |
Status: | READY |
Result: | ACCEPTED |
test | verdict | time | |
---|---|---|---|
#1 | ACCEPTED | 0.01 s | details |
#2 | ACCEPTED | 0.02 s | details |
#3 | ACCEPTED | 0.00 s | details |
#4 | ACCEPTED | 0.00 s | details |
#5 | ACCEPTED | 0.00 s | details |
#6 | ACCEPTED | 0.00 s | details |
#7 | ACCEPTED | 0.00 s | details |
#8 | ACCEPTED | 0.00 s | details |
#9 | ACCEPTED | 0.00 s | details |
#10 | ACCEPTED | 0.00 s | details |
#11 | ACCEPTED | 0.00 s | details |
#12 | ACCEPTED | 0.00 s | details |
#13 | ACCEPTED | 0.00 s | details |
Compiler report
input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)': input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare] 137 | for (int i = 1; i < path_reversed.size(); i++) | ~~^~~~~~~~~~~~~~~~~~~~~~
Code
#include <bits/stdc++.h> #define REP(i, a, b) for (int i = a; i < b; i++) // Type Aliases for 1D and 2D vectors with initialization #define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val #define ll long long #define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val #define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val using namespace std; void print_vector(vector<int> &x) { for (int v : x) { cout << v << " "; } cout << "\n"; } void print_matrix(vector<vector<int>> &matrix) { cout << "\n" << "----------------" << "\n"; for (vector<int> row : matrix) { print_vector(row); } cout << "\n" << "----------------" << "\n"; } int calc_max_digit(int n) { int max_digit = 0; while (n > 0 && max_digit < 9) { int digit = n % 10; if (digit > max_digit) { max_digit = digit; } n /= 10; } return max_digit; } // edges as edge list for outgoing node as pairs (end, cost) vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges) { int n = edges.size(); vector<bool> processed(n, false); vector<ll> distances(n, LLONG_MAX); distances[start_point] = 0; priority_queue<pair<ll, int>> pq; pq.push({0, start_point}); while (!pq.empty()) { int curr = pq.top().second; pq.pop(); if (processed[curr]) { continue; } processed[curr] = true; ll distance = distances[curr]; for (pair<int, int> edge : edges[curr]) { if (distance + edge.second < distances[edge.first]) { distances[edge.first] = distance + edge.second; pq.push({-distances[edge.first], edge.first}); } } } return distances; } int bfs_edmondson_karp(const vector<vector<ll>> &connections, const int source, const int target, vector<int> &path_reversed) { int n = connections.size(); queue<pair<int, ll>> queue; queue.push({source, LLONG_MAX}); vector<int> predecessor(n, -2); predecessor[source] = -1; while (!queue.empty()) { int current = queue.front().first; ll current_bottleneck = queue.front().second; queue.pop(); if (current == target) { while (current != -1) { path_reversed.push_back(current); current = predecessor[current]; } return current_bottleneck; } for (int edge_end = 0; edge_end < n; edge_end++) { ll edge_cap = connections[current][edge_end]; if (edge_cap > 0 && predecessor[edge_end] == -2) { predecessor[edge_end] = current; queue.push({edge_end, min(current_bottleneck, edge_cap)}); } } } return -1; } ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target) { ll flow = 0; while (true) { vector<int> path_reversed; int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed); if (path_capacity < 0) { break; } flow += path_capacity; for (int i = 1; i < path_reversed.size(); i++) { int edge_end = path_reversed[i - 1]; int edge_start = path_reversed[i]; // reduce forwards edge residual_graph[edge_start][edge_end] -= path_capacity; assert(residual_graph[edge_start][edge_end] >= 0); // add to backwards edge residual_graph[edge_end][edge_start] += path_capacity; assert(residual_graph[edge_end][edge_start] >= 0); } } return flow; } bool dfs(int n, const vector<vector<int>> snakes, vector<bool> &visited, vector<int> path, int start, int target) { if (start == target) { path.push_back(target); return true; } for (int i = n; n >= 1; n--) { if (!visited[i] && !snakes[start][i]) { if (dfs(n, snakes, visited, path, i, target)) { path.push_back(start); return true; } } } return false; } vector<int> z(const string &s) { int n = s.size(); vector<int> z(n); z[0] = n; int x = 0, y = 0; for (int k = 1; k < n; k++) { z[k] = max(0, min(z[k - x], y - k + 1)); while (k + z[k] < n && s[z[k]] == s[k + z[k]]) { // while there is a potential longer match and characters coincide x = k; y = k + z[k]; z[k]++; } } return z; } typedef long long C; typedef complex<C> P; #define X real() #define Y imag() C cross(P a, P b) { return (conj(a) * b).imag(); } bool is_between(C a, C b, C c) { return min(a, b) <= c && c <= max(a, b); } bool check_intersect(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4) { P p1 = P(x1, y1); P p2 = P(x2, y2); P p3 = P(x3, y3); P p4 = P(x4, y4); if (p1 == p3 || p1 == p4 || p2 == p3 || p2 == p4) { return true; } if (cross(p2 - p1, p3 - p1) == 0 && cross(p2 - p1, p4 - p1) == 0) { return (is_between(p1.real(), p2.real(), p3.real()) && is_between(p1.imag(), p2.imag(), p3.imag())) || (is_between(p1.real(), p2.real(), p4.real()) && is_between(p1.imag(), p2.imag(), p4.imag())) || (is_between(p3.real(), p4.real(), p1.real()) && is_between(p3.imag(), p4.imag(), p1.imag())) || (is_between(p3.real(), p4.real(), p2.real()) && is_between(p3.imag(), p4.imag(), p2.imag())); } C cross1 = cross(p2 - p1, p3 - p1); C cross2 = cross(p2 - p1, p4 - p1); C cross3 = cross(p4 - p3, p1 - p3); C cross4 = cross(p4 - p3, p2 - p3); return (cross1 * cross2 < 0) && (cross3 * cross4 < 0); } bool onSegment(P p, P a, P b) { // Calculate cross product C cross = (b.X - a.X) * (p.Y - a.Y) - (b.Y - a.Y) * (p.X - a.X); if (cross != 0) return false; // Check if p is within the bounding rectangle of a and b C minX = min(a.X, b.X); C maxX = max(a.X, b.X); C minY = min(a.Y, b.Y); C maxY = max(a.Y, b.Y); if (p.X >= minX && p.X <= maxX && p.Y >= minY && p.Y <= maxY) return true; return false; } int main() { int n, m; cin >> n >> m; vector<P> vertices(n); for (int i = 0; i < n; ++i) { C x, y; cin >> x >> y; vertices[i] = P(x, y); } vector<P> points(m); for (int i = 0; i < m; ++i) { C x, y; cin >> x >> y; points[i] = P(x, y); } for (int i = 0; i < m; ++i) { P p = points[i]; bool onBoundary = false; int crossings = 0; for (int j = 0; j < n; ++j) { P a = vertices[j]; P b = vertices[(j + 1) % n]; if (onSegment(p, a, b)) { onBoundary = true; break; } if ((a.Y > p.Y) != (b.Y > p.Y)) { C det = (b.X - a.X) * (p.Y - a.Y) - (b.Y - a.Y) * (p.X - a.X); if (det == 0) { continue; } bool intersects = (det > 0) == (b.Y > a.Y); if (intersects) crossings++; } } if (onBoundary) { cout << "BOUNDARY" << endl; } else if (crossings % 2 == 1) { cout << "INSIDE" << endl; } else { cout << "OUTSIDE" << endl; } } return 0; }
Test details
Test 1
Verdict: ACCEPTED
input |
---|
100 1000 -7 -19 91 77 100 100 64 60 ... |
correct output |
---|
INSIDE OUTSIDE INSIDE INSIDE INSIDE ... |
user output |
---|
INSIDE OUTSIDE INSIDE INSIDE INSIDE ... Truncated |
Test 2
Verdict: ACCEPTED
input |
---|
1000 1000 365625896 -113418831 278762563 38777445 250367343 -96991975 175866909 -129766978 ... |
correct output |
---|
OUTSIDE OUTSIDE INSIDE OUTSIDE OUTSIDE ... |
user output |
---|
OUTSIDE OUTSIDE INSIDE OUTSIDE OUTSIDE ... Truncated |
Test 3
Verdict: ACCEPTED
input |
---|
4 1 1 5 5 5 5 1 1 1 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 4
Verdict: ACCEPTED
input |
---|
4 1 1 5 5 5 5 1 1 1 ... |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 5
Verdict: ACCEPTED
input |
---|
4 1 1 100 2 50 1 20 0 50 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 6
Verdict: ACCEPTED
input |
---|
8 1 0 0 0 2 1 1 2 2 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 7
Verdict: ACCEPTED
input |
---|
4 4 0 0 3 0 3 4 0 4 ... |
correct output |
---|
INSIDE BOUNDARY OUTSIDE BOUNDARY |
user output |
---|
INSIDE BOUNDARY OUTSIDE BOUNDARY |
Test 8
Verdict: ACCEPTED
input |
---|
6 1 0 0 0 2 3 1 2 2 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 9
Verdict: ACCEPTED
input |
---|
3 1 0 0 1 1000000000 -3 0 1 1 |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 10
Verdict: ACCEPTED
input |
---|
3 1 -100000 0 -1000000000 -999999999 1000000000 1000000000 0 0 |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 11
Verdict: ACCEPTED
input |
---|
3 1 -100000 0 -999999999 -1000000000 1000 1000 0 0 |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 12
Verdict: ACCEPTED
input |
---|
4 1 -4 1 -6 1 -6 -1 -4 -1 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 13
Verdict: ACCEPTED
input |
---|
3 1 0 10 0 -10 10 0 1 0 |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |