Task: | Point in Polygon |
Sender: | HFalke |
Submission time: | 2024-11-11 16:41:36 +0200 |
Language: | C++ (C++17) |
Status: | READY |
Result: | ACCEPTED |
test | verdict | time | |
---|---|---|---|
#1 | ACCEPTED | 0.01 s | details |
#2 | ACCEPTED | 0.02 s | details |
#3 | ACCEPTED | 0.00 s | details |
#4 | ACCEPTED | 0.00 s | details |
#5 | ACCEPTED | 0.00 s | details |
#6 | ACCEPTED | 0.00 s | details |
#7 | ACCEPTED | 0.00 s | details |
#8 | ACCEPTED | 0.00 s | details |
#9 | ACCEPTED | 0.00 s | details |
#10 | ACCEPTED | 0.00 s | details |
#11 | ACCEPTED | 0.00 s | details |
#12 | ACCEPTED | 0.00 s | details |
#13 | ACCEPTED | 0.00 s | details |
Code
#include <bits/stdc++.h> using namespace std; //Definitions for quicker writing #define REP(i,a,b) for (int i = a; i < b; i++) #define clz __builtin_clz #define ctz __builtin_ctz #define popct __builtin_popcount #define PB push_back #define MP make_pair #define F first #define S second #define X real() #define Y imag() //Typedefs for quicker writing typedef long long ll; typedef vector<int> vi; typedef vector<long long> vl; typedef pair<int,int> pi; typedef pair<long long, long long> pl; typedef complex<long long> P; //Max values const long long lmx = LLONG_MAX; const int imx = INT_MAX; const ll INF = 1e9+7; //cross(po v, po w){ // return v.X * w.Y - v.Y * w.X; //} //ll shoelace(ll n){ // ll sum = 0; // REP(i,0,n-1){ // sum += cross(points[i],points[i+1]); // } // sum += cross(points[n-1],points[0]); // return abs(sum)/2; //} ll cross(P a, P b, P c) { P u = b - a; P v = c - a; ll cp = (conj(u)*v).Y; return (cp > 0) - (cp < 0); } bool comp(const P &a, const P &b) { return (a.X == b.X) ? (a.Y < b.Y) : (a.X < b.X); } bool mid(P a, P b, P c) { vector<P> v = {a, b, c}; sort(v.begin(), v.end(), comp); return (v[1] == c); } // Function to check if a point is inside or outside the polygon bool check(P a, P b, P c, P d) { // Calculate cross product of vectors a-b and a-c ll cp1 = cross(a, b, c); // Calculate cross product of vectors a-b and a-d ll cp2 = cross(a, b, d); // Calculate cross product of vectors c-d and c-a ll cp3 = cross(c, d, a); // Calculate cross product of vectors c-d and c-b ll cp4 = cross(c, d, b); // Check if points c and d are on different sides of line a-b if (cp1 * cp2 < 0 && cp3 * cp4 < 0) return 1; // Check if point a lies on line c-d and b lies on opposite side of c-d if (cp3 == 0 && mid(c, d, a) && cp4 < 0) return 1; // Check if point b lies on line c-d and a lies on opposite side of c-d if (cp4 == 0 && mid(c, d, b) && cp3 < 0) return 1; // Otherwise, return false return 0; } int main(){ ll n,m; cin >> n >> m; vector<pl> vertices; vector<pl> points; ll a,b; REP(i,0,n){ cin >> a >> b; vertices.PB({a,b}); } REP(i,0,m){ cin >> a >> b; points.PB({a,b}); } vector<P> polygon; for (ll i = 0; i < n; i++) { polygon.push_back({vertices[i].first, vertices[i].second}); } polygon.push_back(polygon[0]); for (ll i = 0; i < m; i++) { P point = {points[i].first, points[i].second}; P infinity = {INF, INF}; ll cnt = 0; ll flag = 0; for (ll j = 0; j < n; j++) { ll cp = cross(polygon[j], polygon[j+1], point); if (cp == 0 && mid(polygon[j], polygon[j+1], point)) { flag = 1; break; } cnt += check(polygon[j], polygon[j+1], point, infinity); } if (flag) cout << "BOUNDARY" << endl; else cout << (cnt & 1 ? "INSIDE" : "OUTSIDE") << endl; } return 0; }
Test details
Test 1
Verdict: ACCEPTED
input |
---|
100 1000 -7 -19 91 77 100 100 64 60 ... |
correct output |
---|
INSIDE OUTSIDE INSIDE INSIDE INSIDE ... |
user output |
---|
INSIDE OUTSIDE INSIDE INSIDE INSIDE ... Truncated |
Test 2
Verdict: ACCEPTED
input |
---|
1000 1000 365625896 -113418831 278762563 38777445 250367343 -96991975 175866909 -129766978 ... |
correct output |
---|
OUTSIDE OUTSIDE INSIDE OUTSIDE OUTSIDE ... |
user output |
---|
OUTSIDE OUTSIDE INSIDE OUTSIDE OUTSIDE ... Truncated |
Test 3
Verdict: ACCEPTED
input |
---|
4 1 1 5 5 5 5 1 1 1 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 4
Verdict: ACCEPTED
input |
---|
4 1 1 5 5 5 5 1 1 1 ... |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 5
Verdict: ACCEPTED
input |
---|
4 1 1 100 2 50 1 20 0 50 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 6
Verdict: ACCEPTED
input |
---|
8 1 0 0 0 2 1 1 2 2 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 7
Verdict: ACCEPTED
input |
---|
4 4 0 0 3 0 3 4 0 4 ... |
correct output |
---|
INSIDE BOUNDARY OUTSIDE BOUNDARY |
user output |
---|
INSIDE BOUNDARY OUTSIDE BOUNDARY |
Test 8
Verdict: ACCEPTED
input |
---|
6 1 0 0 0 2 3 1 2 2 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 9
Verdict: ACCEPTED
input |
---|
3 1 0 0 1 1000000000 -3 0 1 1 |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 10
Verdict: ACCEPTED
input |
---|
3 1 -100000 0 -1000000000 -999999999 1000000000 1000000000 0 0 |
correct output |
---|
OUTSIDE |
user output |
---|
OUTSIDE |
Test 11
Verdict: ACCEPTED
input |
---|
3 1 -100000 0 -999999999 -1000000000 1000 1000 0 0 |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 12
Verdict: ACCEPTED
input |
---|
4 1 -4 1 -6 1 -6 -1 -4 -1 ... |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |
Test 13
Verdict: ACCEPTED
input |
---|
3 1 0 10 0 -10 10 0 1 0 |
correct output |
---|
INSIDE |
user output |
---|
INSIDE |