Task: | Line Segment Intersection |
Sender: | bubu2006 |
Submission time: | 2024-11-06 21:33:49 +0200 |
Language: | C++ (C++20) |
Status: | READY |
Result: | ACCEPTED |
test | verdict | time | |
---|---|---|---|
#1 | ACCEPTED | 0.07 s | details |
#2 | ACCEPTED | 0.08 s | details |
#3 | ACCEPTED | 0.10 s | details |
#4 | ACCEPTED | 0.12 s | details |
#5 | ACCEPTED | 0.00 s | details |
#6 | ACCEPTED | 0.00 s | details |
Code
#pragma GCC optimize("O3","unroll-loops") #pragma GCC target("avx2,bmi,bmi2,popcnt,lzcnt") #include <bits/stdc++.h> using namespace std; #define int long long #define rep(i, a, b) for(int i = a; i < (b); ++i) #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() typedef long long ll; typedef pair<int, int> pii; typedef vector<int> vi; string to_string(string s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } #ifdef LOCAL #define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif /** * Author: Ulf Lundstrom * Date: 2009-02-26 * License: CC0 * Source: My head with inspiration from tinyKACTL * Description: Class to handle points in the plane. * T can be e.g. double or long long. (Avoid int.) * Status: Works fine, used a lot */ template <class T> int sgn(T x) { return (x > 0) - (x < 0); } template<class T> struct Point { typedef Point P; T x, y; explicit Point(T x=0, T y=0) : x(x), y(y) {} bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); } bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); } P operator+(P p) const { return P(x+p.x, y+p.y); } P operator-(P p) const { return P(x-p.x, y-p.y); } P operator*(T d) const { return P(x*d, y*d); } P operator/(T d) const { return P(x/d, y/d); } T dot(P p) const { return x*p.x + y*p.y; } T cross(P p) const { return x*p.y - y*p.x; } T cross(P a, P b) const { return (a-*this).cross(b-*this); } T dist2() const { return x*x + y*y; } double dist() const { return sqrt((double)dist2()); } // angle to x-axis in interval [-pi, pi] double angle() const { return atan2(y, x); } P unit() const { return *this/dist(); } // makes dist()=1 P perp() const { return P(-y, x); } // rotates +90 degrees P normal() const { return perp().unit(); } // returns point rotated 'a' radians ccw around the origin P rotate(double a) const { return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); } friend ostream& operator<<(ostream& os, P p) { return os << "(" << p.x << "," << p.y << ")"; } }; /** * Author: Victor Lecomte, chilli * Date: 2019-04-27 * License: CC0 * Source: https://vlecomte.github.io/cp-geo.pdf * Description:\ \begin{minipage}{75mm} If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. \end{minipage} \begin{minipage}{15mm} \includegraphics[width=\textwidth]{content/geometry/SegmentIntersection} \end{minipage} * Usage: * vector<P> inter = segInter(s1,e1,s2,e2); * if (sz(inter)==1) * cout << "segments intersect at " << inter[0] << endl; * Status: stress-tested, tested on kattis:intersection */ /** * Author: Victor Lecomte, chilli * Date: 2019-04-26 * License: CC0 * Source: https://vlecomte.github.io/cp-geo.pdf * Description: Returns true iff p lies on the line segment from s to e. * Use \texttt{(segDist(s,e,p)<=epsilon)} instead when using Point<double>. * Status: */ template<class P> bool onSegment(P s, P e, P p) { return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0; } template<class P> vector<P> segInter(P a, P b, P c, P d) { auto oa = c.cross(d, a), ob = c.cross(d, b), oc = a.cross(b, c), od = a.cross(b, d); // Checks if intersection is single non-endpoint point. if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0) return {(a * ob - b * oa) / (ob - oa)}; set<P> s; if (onSegment(c, d, a)) s.insert(a); if (onSegment(c, d, b)) s.insert(b); if (onSegment(a, b, c)) s.insert(c); if (onSegment(a, b, d)) s.insert(d); return {all(s)}; } void solve() { Point<int> a, b, c, d; cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y; vector<Point<int>> inter = segInter(a,b,c,d); if (sz(inter) > 0) { cout << "YES\n"; } else { cout << "NO\n"; } } signed main() { cin.tie(0)->sync_with_stdio(0); cin.exceptions(cin.failbit); // RTE if input wrong datatype int t; cin >> t; while (t--) solve(); }
Test details
Test 1
Verdict: ACCEPTED
input |
---|
100000 9 7 1 8 8 -5 0 2 10 1 -1 2 -4 1 -7 3 10 2 -8 6 1 2 2 -1 -10 1 9 -7 4 -3 -5 0 ... |
correct output |
---|
NO NO NO NO NO ... |
user output |
---|
NO NO NO NO NO ... |
Test 2
Verdict: ACCEPTED
input |
---|
100000 81 745 -967 768 -451 -490 -454... |
correct output |
---|
NO NO YES NO YES ... |
user output |
---|
NO NO YES NO YES ... |
Test 3
Verdict: ACCEPTED
input |
---|
100000 492853 -452834 -657156 -282543... |
correct output |
---|
YES YES NO YES YES ... |
user output |
---|
YES YES NO YES YES ... |
Test 4
Verdict: ACCEPTED
input |
---|
100000 788522666 939776556 -831492125... |
correct output |
---|
NO NO NO NO NO ... |
user output |
---|
NO NO NO NO NO ... |
Test 5
Verdict: ACCEPTED
input |
---|
1 1 6 6 6 4 4 1000000000 1000000... |
correct output |
---|
YES |
user output |
---|
YES |
Test 6
Verdict: ACCEPTED
input |
---|
1 -1000000000 1000000000 9999999... |
correct output |
---|
NO |
user output |
---|
NO |