#include <bits/stdc++.h>
#define REP(i, a, b) for (int i = a; i < b; i++)
// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val
using namespace std;
void print_vector(vector<int> &x)
{
for (int v : x)
{
cout << v << " ";
}
cout << "\n";
}
void print_matrix(vector<vector<int>> &matrix)
{
cout << "\n"
<< "----------------" << "\n";
for (vector<int> row : matrix)
{
print_vector(row);
}
cout << "\n"
<< "----------------" << "\n";
}
int calc_max_digit(int n)
{
int max_digit = 0;
while (n > 0 && max_digit < 9)
{
int digit = n % 10;
if (digit > max_digit)
{
max_digit = digit;
}
n /= 10;
}
return max_digit;
}
// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
int n = edges.size();
vector<bool> processed(n, false);
vector<ll> distances(n, LLONG_MAX);
distances[start_point] = 0;
priority_queue<pair<ll, int>> pq;
pq.push({0, start_point});
while (!pq.empty())
{
int curr = pq.top().second;
pq.pop();
if (processed[curr])
{
continue;
}
processed[curr] = true;
ll distance = distances[curr];
for (pair<int, int> edge : edges[curr])
{
if (distance + edge.second < distances[edge.first])
{
distances[edge.first] = distance + edge.second;
pq.push({-distances[edge.first], edge.first});
}
}
}
return distances;
}
int bfs_edmondson_karp(const vector<vector<ll>> &connections,
const int source, const int target, vector<int> &path_reversed)
{
int n = connections.size();
queue<pair<int, ll>> queue;
queue.push({source, LLONG_MAX});
vector<int> predecessor(n, -2);
predecessor[source] = -1;
while (!queue.empty())
{
int current = queue.front().first;
ll current_bottleneck = queue.front().second;
queue.pop();
if (current == target)
{
while (current != -1)
{
path_reversed.push_back(current);
current = predecessor[current];
}
return current_bottleneck;
}
for (int edge_end = 0; edge_end < n; edge_end++)
{
ll edge_cap = connections[current][edge_end];
if (edge_cap > 0 && predecessor[edge_end] == -2)
{
predecessor[edge_end] = current;
queue.push({edge_end, min(current_bottleneck, edge_cap)});
}
}
}
return -1;
}
ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
ll flow = 0;
while (true)
{
vector<int> path_reversed;
int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);
if (path_capacity < 0)
{
break;
}
flow += path_capacity;
for (int i = 1; i < path_reversed.size(); i++)
{
int edge_end = path_reversed[i - 1];
int edge_start = path_reversed[i];
// reduce forwards edge
residual_graph[edge_start][edge_end] -= path_capacity;
assert(residual_graph[edge_start][edge_end] >= 0);
// add to backwards edge
residual_graph[edge_end][edge_start] += path_capacity;
assert(residual_graph[edge_end][edge_start] >= 0);
}
}
return flow;
}
bool dfs(int n, const vector<vector<int>> snakes, vector<bool> &visited, vector<int> path, int start, int target)
{
if (start == target)
{
path.push_back(target);
return true;
}
for (int i = n; n >= 1; n--)
{
if (!visited[i] && !snakes[start][i])
{
if (dfs(n, snakes, visited, path, i, target))
{
path.push_back(start);
return true;
}
}
}
return false;
}
vector<int> z(string s)
{
int n = s.size();
vector<int> z(n);
z[0] = n;
int x = 0, y = 0;
for (int k = 1; k < n; k++)
{
z[k] = max(0, min(z[k - x], y - k + 1));
while (k + z[k] < n && s[z[k]] == s[k + z[k]])
{
// while there is a potential longer match and characters coincide
x = k;
y = k + z[k];
z[k]++;
}
}
return z;
}
int main()
{
string s;
cin >> s;
vector<int> zarray = z(s);
for (int v : zarray)
{
cout << v << " ";
}
cout << endl;
}