CSES - Aalto Competitive Programming 2024 - wk8 - Mon - Results
Submission details
Task:Illuminati
Sender:fabiank
Submission time:2024-10-28 17:49:43 +0200
Language:C++ (C++17)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.00 sdetails
#3ACCEPTED0.00 sdetails
#4ACCEPTED0.00 sdetails
#5ACCEPTED0.00 sdetails
#6ACCEPTED0.00 sdetails
#7ACCEPTED0.00 sdetails
#8ACCEPTED0.00 sdetails
#9ACCEPTED0.00 sdetails
#10ACCEPTED0.00 sdetails
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.00 sdetails
#13ACCEPTED0.00 sdetails
#14ACCEPTED0.00 sdetails
#15ACCEPTED0.00 sdetails
#16ACCEPTED0.00 sdetails
#17ACCEPTED0.00 sdetails
#18ACCEPTED0.00 sdetails
#19ACCEPTED0.01 sdetails
#20ACCEPTED0.00 sdetails
#21ACCEPTED0.00 sdetails
#22ACCEPTED0.00 sdetails
#23ACCEPTED0.00 sdetails
#24ACCEPTED0.00 sdetails
#25ACCEPTED0.00 sdetails
#26ACCEPTED0.00 sdetails
#27ACCEPTED0.00 sdetails
#28ACCEPTED0.00 sdetails
#29ACCEPTED0.00 sdetails
#30ACCEPTED0.00 sdetails
#31ACCEPTED0.00 sdetails
#32ACCEPTED0.00 sdetails
#33ACCEPTED0.00 sdetails
#34ACCEPTED0.00 sdetails
#35ACCEPTED0.00 sdetails
#36ACCEPTED0.00 sdetails
#37ACCEPTED0.00 sdetails
#38ACCEPTED0.00 sdetails
#39ACCEPTED0.00 sdetails
#40ACCEPTED0.00 sdetails
#41ACCEPTED0.00 sdetails
#42ACCEPTED0.00 sdetails
#43ACCEPTED0.00 sdetails
#44ACCEPTED0.00 sdetails
#45ACCEPTED0.00 sdetails
#46ACCEPTED0.01 sdetails
#47ACCEPTED0.00 sdetails
#48ACCEPTED0.59 sdetails
#49ACCEPTED0.59 sdetails
#50--details
#51--details
#52--details
#53--details

Compiler report

input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)':
input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  137 |         for (int i = 1; i < path_reversed.size(); i++)
      |                         ~~^~~~~~~~~~~~~~~~~~~~~~
input/code.cpp: In function 'int main()':
input/code.cpp:182:23: warning: comparison of integer expressions of different signedness: 'int' and 'size_t' {aka 'long unsigned int'} [-Wsign-compare]
  182 |     for (int i = 0; i < n; i++)
      |                     ~~^~~
input/code.cpp:196:23: warning: comparison of integer expressions of different signedness: 'int' and 'size_t' {aka 'long unsigned int'} [-Wsign-compare]
  196 |     for (int i = 0; i < n; i++)
      |                     ~~^~~
input/code.cpp:198:31: warning: comparison of integer expressions of different signedness: 'int'...

Code

#include <bits/stdc++.h>

#define REP(i, a, b) for (int i = a; i < b; i++)

// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val))              // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val

using namespace std;

void print_vector(vector<int> &x)
{
    for (int v : x)
    {
        cout << v << " ";
    }
    cout << "\n";
}

void print_matrix(vector<vector<int>> &matrix)
{
    cout << "\n"
         << "----------------" << "\n";
    for (vector<int> row : matrix)
    {
        print_vector(row);
    }
    cout << "\n"
         << "----------------" << "\n";
}

int calc_max_digit(int n)
{
    int max_digit = 0;
    while (n > 0 && max_digit < 9)
    {
        int digit = n % 10;
        if (digit > max_digit)
        {
            max_digit = digit;
        }
        n /= 10;
    }
    return max_digit;
}

// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
    int n = edges.size();
    vector<bool> processed(n, false);
    vector<ll> distances(n, LLONG_MAX);
    distances[start_point] = 0;
    priority_queue<pair<ll, int>> pq;
    pq.push({0, start_point});
    while (!pq.empty())
    {
        int curr = pq.top().second;
        pq.pop();
        if (processed[curr])
        {
            continue;
        }
        processed[curr] = true;
        ll distance = distances[curr];

        for (pair<int, int> edge : edges[curr])
        {

            if (distance + edge.second < distances[edge.first])
            {
                distances[edge.first] = distance + edge.second;
                pq.push({-distances[edge.first], edge.first});
            }
        }
    }
    return distances;
}

int bfs_edmondson_karp(const vector<vector<ll>> &connections,
                       const int source, const int target, vector<int> &path_reversed)
{
    int n = connections.size();

    queue<pair<int, ll>> queue;
    queue.push({source, LLONG_MAX});
    vector<int> predecessor(n, -2);
    predecessor[source] = -1;

    while (!queue.empty())
    {
        int current = queue.front().first;
        ll current_bottleneck = queue.front().second;
        queue.pop();

        if (current == target)
        {
            while (current != -1)
            {
                path_reversed.push_back(current);
                current = predecessor[current];
            }
            return current_bottleneck;
        }

        for (int edge_end = 0; edge_end < n; edge_end++)
        {
            ll edge_cap = connections[current][edge_end];
            if (edge_cap > 0 && predecessor[edge_end] == -2)
            {
                predecessor[edge_end] = current;
                queue.push({edge_end, min(current_bottleneck, edge_cap)});
            }
        }
    }

    return -1;
}

ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
    ll flow = 0;

    while (true)
    {
        vector<int> path_reversed;
        int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);

        if (path_capacity < 0)
        {
            break;
        }

        flow += path_capacity;
        for (int i = 1; i < path_reversed.size(); i++)
        {
            int edge_end = path_reversed[i - 1];
            int edge_start = path_reversed[i];
            // reduce forwards edge
            residual_graph[edge_start][edge_end] -= path_capacity;
            assert(residual_graph[edge_start][edge_end] >= 0);
            // add to backwards edge
            residual_graph[edge_end][edge_start] += path_capacity;
            assert(residual_graph[edge_end][edge_start] >= 0);
        }
    }
    return flow;
}

bool dfs(int n, const vector<vector<int>> snakes, vector<bool> &visited, vector<int> path, int start, int target)
{
    if (start == target)
    {
        path.push_back(target);
        return true;
    }
    for (int i = n; n >= 1; n--)
    {
        if (!visited[i] && !snakes[start][i])
        {
            if (dfs(n, snakes, visited, path, i, target))
            {
                path.push_back(start);
                return true;
            }
        }
    }
    return false;
}

int main()
{
    size_t n;
    cin >> n;

    int result = 0;

    vector<bitset<3000>> s(n);

    for (int i = 0; i < n; i++)
    {
        string str;
        cin >> str;
        reverse(str.begin(), str.end());
        s[i] = bitset<3000>(str);
    }

    // for (int i = 0; i < n; i++)
    // {
    //     string s;
    //     cout << s[i][0] << endl;
    // }

    for (int i = 0; i < n; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
            if (s[i][j])
            {
                for (int k = j + 1; k < n; k++)
                {
                    // cout << i << " - " << j << " - " << k << endl;
                    // cout << s[j][k] << " - " << s[k][i] << "i: " << i << endl;
                    if (s[j][k] && s[k][i])
                    {
                        // cout << i << " - " << j << " - " << k << endl;
                        result += 1;
                    }
                }
            }
        }
    }
    cout << result << endl;
}

Test details

Test 1

Verdict: ACCEPTED

input
1
0

correct output
0

user output
0

Test 2

Verdict: ACCEPTED

input
2
01
10

correct output
0

user output
0

Test 3

Verdict: ACCEPTED

input
2
01
10

correct output
0

user output
0

Test 4

Verdict: ACCEPTED

input
3
011
101
110

correct output
1

user output
1

Test 5

Verdict: ACCEPTED

input
3
010
101
010

correct output
0

user output
0

Test 6

Verdict: ACCEPTED

input
3
000
001
010

correct output
0

user output
0

Test 7

Verdict: ACCEPTED

input
3
011
100
100

correct output
0

user output
0

Test 8

Verdict: ACCEPTED

input
4
0111
1011
1101
1110

correct output
4

user output
4

Test 9

Verdict: ACCEPTED

input
4
0011
0010
1100
1000

correct output
0

user output
0

Test 10

Verdict: ACCEPTED

input
4
0000
0011
0101
0110

correct output
1

user output
1

Test 11

Verdict: ACCEPTED

input
4
0101
1010
0100
1000

correct output
0

user output
0

Test 12

Verdict: ACCEPTED

input
4
0111
1001
1001
1110

correct output
2

user output
2

Test 13

Verdict: ACCEPTED

input
4
0001
0010
0100
1000

correct output
0

user output
0

Test 14

Verdict: ACCEPTED

input
4
0110
1001
1000
0100

correct output
0

user output
0

Test 15

Verdict: ACCEPTED

input
4
0001
0000
0001
1010

correct output
0

user output
0

Test 16

Verdict: ACCEPTED

input
4
0101
1001
0000
1100

correct output
1

user output
1

Test 17

Verdict: ACCEPTED

input
4
0001
0000
0000
1000

correct output
0

user output
0

Test 18

Verdict: ACCEPTED

input
5
01111
10111
11010
11101
...

correct output
7

user output
7

Test 19

Verdict: ACCEPTED

input
5
00111
00000
10010
10100
...

correct output
1

user output
1

Test 20

Verdict: ACCEPTED

input
5
00001
00110
01000
01000
...

correct output
0

user output
0

Test 21

Verdict: ACCEPTED

input
5
01011
10001
00011
10100
...

correct output
1

user output
1

Test 22

Verdict: ACCEPTED

input
5
01110
10111
11011
11101
...

correct output
7

user output
7

Test 23

Verdict: ACCEPTED

input
5
00011
00001
00010
10100
...

correct output
0

user output
0

Test 24

Verdict: ACCEPTED

input
5
01100
10100
11000
00001
...

correct output
1

user output
1

Test 25

Verdict: ACCEPTED

input
5
00010
00011
00001
11000
...

correct output
0

user output
0

Test 26

Verdict: ACCEPTED

input
5
01010
10101
01010
10100
...

correct output
0

user output
0

Test 27

Verdict: ACCEPTED

input
5
00010
00000
00000
10000
...

correct output
0

user output
0

Test 28

Verdict: ACCEPTED

input
10
0111111110
1011000101
1100001110
1100101100
...

correct output
26

user output
26

Test 29

Verdict: ACCEPTED

input
10
0011100010
0000000010
1001110011
1010001001
...

correct output
11

user output
11

Test 30

Verdict: ACCEPTED

input
10
0000111000
0000001100
0000011111
0000001101
...

correct output
7

user output
7

Test 31

Verdict: ACCEPTED

input
10
0101100111
1001000000
0000010000
1100100010
...

correct output
9

user output
9

Test 32

Verdict: ACCEPTED

input
10
0111011111
1010010010
1101011001
1010101100
...

correct output
22

user output
22

Test 33

Verdict: ACCEPTED

input
10
0001100110
0001010100
0001010111
1110000110
...

correct output
11

user output
11

Test 34

Verdict: ACCEPTED

input
10
0110010000
1011011010
1100110110
0100101011
...

correct output
22

user output
22

Test 35

Verdict: ACCEPTED

input
10
0001001101
0001010000
0000011110
1100000101
...

correct output
13

user output
13

Test 36

Verdict: ACCEPTED

input
10
0101010110
1000101001
0001011011
1010101110
...

correct output
8

user output
8

Test 37

Verdict: ACCEPTED

input
10
0001000000
0000100000
0000000010
1000110111
...

correct output
19

user output
19

Test 38

Verdict: ACCEPTED

input
100
011111111011000101000111010110...

correct output
20807

user output
20807

Test 39

Verdict: ACCEPTED

input
100
001110001000000010111001100100...

correct output
21100

user output
21100

Test 40

Verdict: ACCEPTED

input
100
000011100000001100001111100110...

correct output
18556

user output
18556

Test 41

Verdict: ACCEPTED

input
100
010110011101000000001000010001...

correct output
20091

user output
20091

Test 42

Verdict: ACCEPTED

input
100
011101111110010010101100110110...

correct output
21281

user output
21281

Test 43

Verdict: ACCEPTED

input
100
000110011001010100101011100011...

correct output
20746

user output
20746

Test 44

Verdict: ACCEPTED

input
100
011001000011011010011011010101...

correct output
21793

user output
21793

Test 45

Verdict: ACCEPTED

input
100
000100110101010000001111000010...

correct output
19781

user output
19781

Test 46

Verdict: ACCEPTED

input
100
010101011000101001101101110111...

correct output
20006

user output
20006

Test 47

Verdict: ACCEPTED

input
100
000100000000100000000001011011...

correct output
19161

user output
19161

Test 48

Verdict: ACCEPTED

input
1000
011111111011000101000111010110...

correct output
20823418

user output
20823418

Test 49

Verdict: ACCEPTED

input
1000
001110001000000010111001100100...

correct output
20848491

user output
20848491

Test 50

Verdict:

input
2000
010001011010001100000111100111...

correct output
166808034

user output
(empty)

Test 51

Verdict:

input
2000
000010011000001011011110111110...

correct output
165842024

user output
(empty)

Test 52

Verdict:

input
2999
000110011001010001100011110110...

correct output
561389670

user output
(empty)

Test 53

Verdict:

input
3000
011111111111111111111111111111...

correct output
4495501000

user output
(empty)