CSES - Aalto Competitive Programming 2024 - wk7 - Mon - Results
Submission details
Task:Snakeless path
Sender:arnxxau
Submission time:2024-10-21 17:45:39 +0300
Language:C++ (C++20)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#20.00 sdetails
#30.00 sdetails
#40.00 sdetails
#50.00 sdetails
#6ACCEPTED0.00 sdetails
#7ACCEPTED0.00 sdetails
#8ACCEPTED0.00 sdetails
#90.00 sdetails
#100.00 sdetails
#110.00 sdetails
#120.00 sdetails
#130.00 sdetails
#14ACCEPTED0.00 sdetails
#15ACCEPTED0.00 sdetails
#16ACCEPTED0.00 sdetails
#17ACCEPTED0.00 sdetails
#18ACCEPTED0.00 sdetails
#19ACCEPTED0.00 sdetails
#200.00 sdetails
#210.00 sdetails
#220.00 sdetails
#230.00 sdetails
#24ACCEPTED0.00 sdetails
#25ACCEPTED0.00 sdetails
#260.00 sdetails
#27ACCEPTED0.00 sdetails
#280.00 sdetails
#29ACCEPTED0.00 sdetails
#300.00 sdetails
#310.00 sdetails
#320.01 sdetails
#330.00 sdetails
#34ACCEPTED0.01 sdetails
#35ACCEPTED0.00 sdetails
#360.00 sdetails
#37ACCEPTED0.00 sdetails
#38ACCEPTED0.01 sdetails
#39ACCEPTED0.00 sdetails
#400.00 sdetails
#410.00 sdetails
#420.00 sdetails
#430.00 sdetails
#44ACCEPTED0.01 sdetails
#45ACCEPTED0.00 sdetails
#460.01 sdetails
#47ACCEPTED0.00 sdetails
#48ACCEPTED0.01 sdetails
#49ACCEPTED0.00 sdetails
#500.01 sdetails
#510.01 sdetails
#520.01 sdetails
#530.01 sdetails
#540.14 sdetails
#55ACCEPTED0.01 sdetails
#560.14 sdetails
#57ACCEPTED0.01 sdetails
#580.14 sdetails
#59ACCEPTED0.01 sdetails
#600.57 sdetails
#61ACCEPTED0.01 sdetails
#62ACCEPTED0.01 sdetails
#631.23 sdetails
#640.01 sdetails
#650.57 sdetails
#66ACCEPTED0.01 sdetails
#67ACCEPTED0.01 sdetails
#680.14 sdetails
#69ACCEPTED0.01 sdetails
#700.40 sdetails
#710.39 sdetails
#720.40 sdetails
#730.39 sdetails
#740.40 sdetails
#750.40 sdetails
#760.39 sdetails
#770.40 sdetails
#780.39 sdetails
#790.39 sdetails
#800.40 sdetails
#810.39 sdetails
#820.40 sdetails
#830.39 sdetails
#840.39 sdetails
#850.39 sdetails
#860.39 sdetails
#870.39 sdetails
#880.39 sdetails
#890.40 sdetails

Compiler report

input/code.cpp: In function 'int Ford_Fulkerson(int, int, int, std::vector<std::vector<int> >&)':
input/code.cpp:58:20: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
   58 |     while (min_cap = bfs(source, target, n, parent, graph)) {
      |            ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
input/code.cpp: In function 'bool residual_dfs(std::vector<std::vector<int> >&, std::vector<int>&, int, int)':
input/code.cpp:100:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  100 |     for (int v = 0; v < graph.size(); v++) {
      |                     ~~^~~~~~~~~~~~~~
input/code.cpp: In function 'int main()':
input/code.cpp:143:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  143 |             for (int j = 0; j < paths[0...

Code

#include <climits>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>

using namespace std;

int bfs(int source, int target, int n, vector<int>& parent, vector<vector<int>>& graph) {
    // Update the parent vector as each node value to be -1
    fill(parent.begin(), parent.end(), -1);
    // parent of source node to be -2
    parent[source] = -2;
    // Initializing queue for storing and min capacity so far
    queue<pair<int, int>> q;
    // Source node min capacity to be 1e9
    q.push({source, 1e9});

    // Looping while queue is not empty
    while (!q.empty()) {
        // storing top node and min capacity so far
        int u = q.front().first;
        int cap = q.front().second;
        // Removing top node from queue
        q.pop();
        // Looping all edges from u
        for (int v = 0; v < n; v++) {
            // finding v node has edge from u
            if (u != v && graph[u][v] != 0 && parent[v] == -1) {
                // storing parent v to be u
                parent[v] = u;
                // Updating the minimum capacity
                int min_cap = min(cap, graph[u][v]);
                // If v is the target node then return minimum capacity
                if (v == target) {
                    return min_cap;
                }
                // if we didn't find target node
                // Insert the v node and minimum capacity so far in queue
                q.push({v, min_cap});
            }
        }
    }
    // if we didn't find path between source to target return 0
    return 0;
}
vector<vector<int>> paths;
int Ford_Fulkerson(int source, int target, int n, vector<vector<int>>& graph) {
    // Initializing parent vector for finding the path from source to target
    // In which we add parent of the node
    vector<int> parent(n, -1);
    // Initializing maximum flow for storing ans
    int max_flow = 0;
    int min_cap = 0;  // storing minimum capacity in each path

    // looping while minimum capacity become zero
    // For finding path and minimum capacity we call function bfs()
    while (min_cap = bfs(source, target, n, parent, graph)) {
        vector<int> path;
        int x = target;
        while (x != source) {
            // cout << '<' << x << endl;
            path.push_back(x);
            x = parent[x];
        }
        path.push_back(0);
        reverse(path.begin(), path.end());
        paths.push_back(path);

        // Adding the min_cap from this path
        max_flow += min_cap;
        // storing target node in v
        int v = target;

        // while we didn't find the source node
        // Looping through path stored in parent
        while (v != source) {
            // finding parent of v node
            int u = parent[v];
            // Subtracting minimum capacity from u to v
            // And adding minimum capacity from v to u
            graph[u][v] -= min_cap;
            graph[v][u] += min_cap;
            v = u;
        }
    }
    // Returning maximum flow in the graph
    return max_flow;
}

void addEdge(vector<vector<int>>& graph,
             int u, int v, int w) {
    graph[u][v] = w;
}

bool residual_dfs(vector<vector<int>>& graph, vector<int>& path, int u, int end) {
    path.push_back(u);
    if (u == end) return true;

    for (int v = 0; v < graph.size(); v++) {
        auto it = find(path.begin(), path.end(), v);

        if (graph[v][u] == 1 and it == path.end()) {
            graph[v][u] = 0;
            if (residual_dfs(graph, path, v, end)) return true;
        }
    }
    path.pop_back();
    return false;
}

int main() {
    int n, m;

    cin >> n >> m;
    vector<vector<int>> graph(n, vector<int>(n, 1));
    for (int i = 0; i < m; i++) {
        int a, b;
        cin >> a >> b;
        addEdge(graph, a - 1, b - 1, 0);
    }

    int k = Ford_Fulkerson(0, n - 1, n, graph);

    cout << k << endl;

    /*
        for (int x = 0; x < k; x++)
        {
        vector<int> path;
        residual_dfs(graph, path, 0, n - 1);
        cout << path.size() << endl;
        for (int i = 0; i < path.size(); i++) {
            cout << path[i] + 1 << ' ';
        }
        cout << endl;
        }

    */

    if (k > 0) {

            for (int j = 0; j < paths[0].size(); j++) {
                cout << paths[0][j] + 1 << ' ';
            }
            cout << endl;
    }

    return 0;
}

Test details

Test 1

Verdict: ACCEPTED

input
2 1
1 2

correct output
0

user output
0

Test 2

Verdict:

input
3 1
1 3

correct output
3
1 2 3 

user output
1
1 2 3 

Test 3

Verdict:

input
3 1
1 3

correct output
3
1 2 3 

user output
1
1 2 3 

Test 4

Verdict:

input
3 1
1 3

correct output
3
1 2 3 

user output
1
1 2 3 

Test 5

Verdict:

input
4 1
1 4

correct output
3
1 3 4 

user output
2
1 2 4 

Test 6

Verdict: ACCEPTED

input
4 5
1 2
1 3
1 4
2 3
...

correct output
0

user output
0

Test 7

Verdict: ACCEPTED

input
4 3
1 2
1 3
1 4

correct output
0

user output
0

Test 8

Verdict: ACCEPTED

input
4 2
1 3
2 3

correct output
2
1 4 

user output
2
1 4 

Test 9

Verdict:

input
4 4
1 2
1 4
2 3
3 4

correct output
0

user output
1
1 3 2 4 

Test 10

Verdict:

input
5 6
1 2
1 4
1 5
2 5
...

correct output
5
1 3 2 4 5 

user output
1
1 3 2 4 5 

Test 11

Verdict:

input
5 5
1 2
1 3
1 5
2 5
...

correct output
3
1 4 5 

user output
1
1 4 5 

Test 12

Verdict:

input
5 5
1 3
1 4
1 5
3 5
...

correct output
3
1 2 5 

user output
1
1 2 5 

Test 13

Verdict:

input
5 6
1 3
1 4
1 5
2 4
...

correct output
5
1 2 3 4 5 

user output
1
1 2 3 4 5 

Test 14

Verdict: ACCEPTED

input
5 9
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 15

Verdict: ACCEPTED

input
5 7
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 16

Verdict: ACCEPTED

input
5 1
1 5

correct output
3
1 4 5 

user output
3
1 2 5 

Test 17

Verdict: ACCEPTED

input
5 4
1 2
1 3
1 4
1 5

correct output
0

user output
0

Test 18

Verdict: ACCEPTED

input
5 9
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 19

Verdict: ACCEPTED

input
5 4
1 2
1 3
1 4
1 5

correct output
0

user output
0

Test 20

Verdict:

input
10 16
1 2
1 3
1 4
1 5
...

correct output
6
1 6 9 8 7 10 

user output
1
1 6 2 7 10 

Test 21

Verdict:

input
10 16
1 2
1 3
1 4
1 5
...

correct output
5
1 9 8 7 10 

user output
1
1 9 7 10 

Test 22

Verdict:

input
10 16
1 2
1 4
1 5
1 6
...

correct output
10
1 3 9 8 7 6 5 4 2 10 

user output
1
1 3 2 10 

Test 23

Verdict:

input
10 16
1 3
1 4
1 5
1 6
...

correct output
6
1 2 9 8 7 10 

user output
1
1 2 3 7 10 

Test 24

Verdict: ACCEPTED

input
10 39
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 25

Verdict: ACCEPTED

input
10 17
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 26

Verdict:

input
10 1
1 10

correct output
3
1 9 10 

user output
8
1 2 10 

Test 27

Verdict: ACCEPTED

input
10 9
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 28

Verdict:

input
10 40
1 2
1 3
1 4
1 5
...

correct output
0

user output
1
1 8 5 9 10 

Test 29

Verdict: ACCEPTED

input
10 9
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 30

Verdict:

input
100 196
1 2
1 3
1 4
1 5
...

correct output
31
1 60 99 98 97 96 95 94 93 92 9...

user output
1
1 60 2 72 100 

Test 31

Verdict:

input
100 196
1 2
1 3
1 4
1 5
...

correct output
30
1 99 98 97 96 95 94 93 92 91 9...

user output
1
1 99 72 100 

Test 32

Verdict:

input
100 196
1 2
1 3
1 4
1 5
...

correct output
98
1 20 99 98 97 96 95 94 93 92 9...

user output
1
1 20 4 100 

Test 33

Verdict:

input
100 196
1 2
1 3
1 4
1 5
...

correct output
32
1 8 99 98 97 96 95 94 93 92 91...

user output
1
1 8 2 71 100 

Test 34

Verdict: ACCEPTED

input
100 4910
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 35

Verdict: ACCEPTED

input
100 197
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 36

Verdict:

input
100 248
1 8
1 29
1 53
1 61
...

correct output
3
1 99 100 

user output
93
1 2 100 

Test 37

Verdict: ACCEPTED

input
100 99
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 38

Verdict: ACCEPTED

input
100 4888
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 39

Verdict: ACCEPTED

input
100 99
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 40

Verdict:

input
200 396
1 2
1 3
1 4
1 5
...

correct output
60
1 119 199 198 197 196 195 194 ...

user output
1
1 119 2 143 200 

Test 41

Verdict:

input
200 396
1 2
1 3
1 4
1 5
...

correct output
58
1 199 198 197 196 195 194 193 ...

user output
1
1 199 144 200 

Test 42

Verdict:

input
200 396
1 2
1 3
1 4
1 5
...

correct output
195
1 38 199 198 197 196 195 194 1...

user output
1
1 38 7 200 

Test 43

Verdict:

input
200 396
1 2
1 3
1 4
1 5
...

correct output
61
1 16 199 198 197 196 195 194 1...

user output
1
1 16 2 142 200 

Test 44

Verdict: ACCEPTED

input
200 19807
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 45

Verdict: ACCEPTED

input
200 397
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 46

Verdict:

input
200 994
1 8
1 29
1 53
1 61
...

correct output
3
1 199 200 

user output
188
1 2 200 

Test 47

Verdict: ACCEPTED

input
200 199
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 48

Verdict: ACCEPTED

input
200 19792
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 49

Verdict: ACCEPTED

input
200 199
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 50

Verdict:

input
1000 1996
1 2
1 3
1 4
1 5
...

correct output
288
1 593 999 998 997 996 995 994 ...

user output
1
1 593 2 715 1000 

Test 51

Verdict:

input
1000 1996
1 2
1 3
1 4
1 5
...

correct output
282
1 997 999 998 996 995 994 993 ...

user output
1
1 997 720 1000 

Test 52

Verdict:

input
1000 1996
1 2
1 3
1 4
1 5
...

correct output
975
1 186 999 998 997 996 995 994 ...

user output
1
1 186 27 1000 

Test 53

Verdict:

input
1000 1996
1 2
1 3
1 4
1 5
...

correct output
295
1 72 999 998 997 996 995 994 9...

user output
1
1 72 2 708 1000 

Test 54

Verdict:

input
1000 299999
1 2
1 3
1 4
1 5
...

correct output
3
1 691 1000 

user output
1
1 691 1000 

Test 55

Verdict: ACCEPTED

input
1000 1997
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 56

Verdict:

input
1000 25751
1 8
1 29
1 53
1 61
...

correct output
4
1 999 998 1000 

user output
950
1 2 1000 

Test 57

Verdict: ACCEPTED

input
1000 999
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 58

Verdict:

input
1000 299999
1 2
1 3
1 4
1 5
...

correct output
3
1 832 1000 

user output
2
1 832 1000 

Test 59

Verdict: ACCEPTED

input
1000 999
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 60

Verdict:

input
1000 299999
1 2
1 3
1 4
1 5
...

correct output
3
1 999 1000 

user output
323
1 10 1000 

Test 61

Verdict: ACCEPTED

input
1000 999
1 1000
2 1000
3 1000
4 1000
...

correct output
0

user output
0

Test 62

Verdict: ACCEPTED

input
1000 999
1 1000
2 1000
3 1000
4 1000
...

correct output
0

user output
0

Test 63

Verdict:

input
1000 195765
1 2
1 3
1 4
1 5
...

correct output
4
1 999 997 1000 

user output
596
1 6 1000 

Test 64

Verdict:

input
1000 1996
1 2
1 3
1 4
1 5
...

correct output
229
1 922 999 998 997 996 995 994 ...

user output
1
1 922 773 1000 

Test 65

Verdict:

input
1000 92979
1 6
1 8
1 12
1 18
...

correct output
2
1 1000 

user output
814
1 1000 

Test 66

Verdict: ACCEPTED

input
1000 1997
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 67

Verdict: ACCEPTED

input
1000 1997
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 68

Verdict:

input
1000 299999
1 2
1 3
1 4
1 5
...

correct output
3
1 885 1000 

user output
1
1 885 1000 

Test 69

Verdict: ACCEPTED

input
1000 999
1 2
1 3
1 4
1 5
...

correct output
0

user output
0

Test 70

Verdict:

input
100000 199996
1 2
1 3
1 4
1 5
...

correct output
28483
1 59286 99999 99998 99997 9999...

user output
(empty)

Test 71

Verdict:

input
100000 199996
1 2
1 3
1 4
1 5
...

correct output
27969
1 99719 99999 99998 99997 9999...

user output
(empty)

Test 72

Verdict:

input
100000 199996
1 2
1 3
1 4
1 5
...

correct output
97408
1 18510 99999 99998 99997 9999...

user output
(empty)

Test 73

Verdict:

input
100000 199996
1 2
1 3
1 4
1 5
...

correct output
29187
1 7074 99999 99998 99997 99996...

user output
(empty)

Test 74

Verdict:

input
100000 270197
1 861
1 12080
1 39541
1 39686
...

correct output
3
1 99999 100000 

user output
(empty)

Test 75

Verdict:

input
100000 199997
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)

Test 76

Verdict:

input
100000 284253
1 23553
1 48406
1 56616
1 56899
...

correct output
2
1 100000 

user output
(empty)

Test 77

Verdict:

input
100000 99999
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)

Test 78

Verdict:

input
100000 3335
1 100000
11 26761
12 80933
41 44903
...

correct output
3
1 99999 100000 

user output
(empty)

Test 79

Verdict:

input
100000 99999
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)

Test 80

Verdict:

input
100000 89632
1 76350
1 97733
1 100000
2 16314
...

correct output
3
1 99999 100000 

user output
(empty)

Test 81

Verdict:

input
100000 99999
1 100000
2 100000
3 100000
4 100000
...

correct output
0

user output
(empty)

Test 82

Verdict:

input
100000 99999
1 100000
2 100000
3 100000
4 100000
...

correct output
0

user output
(empty)

Test 83

Verdict:

input
100000 182210
1 17827
1 55463
1 98875
1 100000
...

correct output
3
1 99999 100000 

user output
(empty)

Test 84

Verdict:

input
100000 199996
1 2
1 3
1 4
1 5
...

correct output
22685
1 92190 99999 99998 99997 9999...

user output
(empty)

Test 85

Verdict:

input
100000 244084
1 33037
1 48376
1 94522
1 100000
...

correct output
3
1 99999 100000 

user output
(empty)

Test 86

Verdict:

input
100000 199997
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)

Test 87

Verdict:

input
100000 199997
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)

Test 88

Verdict:

input
100000 22805
1 100000
2 29973
7 38479
7 77260
...

correct output
3
1 99999 100000 

user output
(empty)

Test 89

Verdict:

input
100000 99999
1 2
1 3
1 4
1 5
...

correct output
0

user output
(empty)