CSES - Aalto Competitive Programming 2024 - wk7 Homework - Results
Submission details
Task:Download Speed
Sender:louaha1
Submission time:2024-10-24 09:37:36 +0300
Language:C++ (C++11)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.00 sdetails
#3ACCEPTED0.00 sdetails
#40.00 sdetails
#50.01 sdetails
#6ACCEPTED0.01 sdetails
#7ACCEPTED0.01 sdetails
#8ACCEPTED0.00 sdetails
#90.00 sdetails
#10ACCEPTED0.00 sdetails
#110.01 sdetails
#12ACCEPTED0.00 sdetails

Code

#include <iostream>
#include <vector>
#include <queue>
#include <climits>
#include <cstring>
using namespace std;
const int MAXN = 505; // Maximum number of nodes
int capacity[MAXN][MAXN]; // Capacity matrix
vector<int> adj[MAXN]; // Adjacency list
// Perform BFS to find an augmenting path, and record the path in 'parent'
int bfs(int s, int t, vector<int>& parent) {
fill(parent.begin(), parent.end(), -1);
parent[s] = s;
queue<pair<int, int>> q;
q.push({s, INT_MAX});
while (!q.empty()) {
int u = q.front().first;
int flow = q.front().second;
q.pop();
// Traverse all neighbors of u
for (int v : adj[u]) {
// If the node is not yet visited and the capacity is greater than 0
if (parent[v] == -1 && capacity[u][v] > 0) {
parent[v] = u;
int new_flow = min(flow, capacity[u][v]);
// If we reached the sink, return the flow
if (v == t)
return new_flow;
q.push({v, new_flow});
}
}
}
return 0; // No path found
}
// Edmonds-Karp algorithm to compute the maximum flow
int edmonds_karp(int s, int t, int n) {
int flow = 0;
vector<int> parent(n + 1);
while (int new_flow = bfs(s, t, parent)) {
flow += new_flow;
// Update the capacities of the edges in the augmenting path
int cur = t;
while (cur != s) {
int prev = parent[cur];
capacity[prev][cur] -= new_flow;
capacity[cur][prev] += new_flow;
cur = prev;
}
}
return flow;
}
int main() {
int n, m;
cin >> n >> m;
// Initialize the capacity matrix and adjacency list
memset(capacity, 0, sizeof(capacity));
// Read the edges and build the graph
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
capacity[a][b] += c;
capacity[b][a] += c; // Since the graph is undirected, both directions have the same capacity
adj[a].push_back(b);
adj[b].push_back(a);
}
// Run the Edmonds-Karp algorithm to find the maximum flow from node 1 to node n
int result = edmonds_karp(1, n, n);
cout << result << endl;
return 0;
}

Test details

Test 1

Verdict: ACCEPTED

input
4 3
1 2 5
2 3 3
3 4 6

correct output
3

user output
3

Test 2

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 1
2 3 1
2 4 1
...

correct output
2

user output
2

Test 3

Verdict: ACCEPTED

input
4 5
1 2 1000000000
1 3 1000000000
2 3 1
2 4 1000000000
...

correct output
2000000000

user output
2000000000

Test 4

Verdict:

input
2 1
2 1 100

correct output
0

user output
100

Test 5

Verdict:

input
2 1000
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
1000000000000

user output
0

Test 6

Verdict: ACCEPTED

input
500 998
1 2 54
1 3 59
1 4 83
2 5 79
...

correct output
60

user output
60

Test 7

Verdict: ACCEPTED

input
500 998
1 2 530873053
1 3 156306296
1 4 478040476
3 5 303609600
...

correct output
1093765123

user output
1093765123

Test 8

Verdict: ACCEPTED

input
2 1
1 2 1

correct output
1

user output
1

Test 9

Verdict:

input
4 5
1 2 3
2 4 2
1 3 4
3 4 5
...

correct output
6

user output
9

Test 10

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 2
3 2 1
2 4 2
...

correct output
3

user output
3

Test 11

Verdict:

input
10 999
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
111000000000

user output
0

Test 12

Verdict: ACCEPTED

input
7 9
1 2 1
1 3 1
1 4 1
2 5 1
...

correct output
2

user output
2