CSES - Aalto Competitive Programming 2024 - wk7 Homework - Results
Submission details
Task:Download Speed
Sender:ilyas.ben
Submission time:2024-10-23 14:58:49 +0300
Language:C++ (C++11)
Status:READY
Result:
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.00 sdetails
#3ACCEPTED0.00 sdetails
#4ACCEPTED0.00 sdetails
#50.00 sdetails
#6ACCEPTED0.01 sdetails
#7ACCEPTED0.01 sdetails
#8ACCEPTED0.00 sdetails
#9ACCEPTED0.00 sdetails
#10ACCEPTED0.00 sdetails
#110.00 sdetails
#12ACCEPTED0.00 sdetails

Code

#include <iostream>
#include <vector>
#include <limits.h>
#include <queue>

using namespace std;

class MaxFlow {
    int n; // Number of vertices
    vector<vector<int>> capacity; // Capacity graph
    vector<vector<int>> adj; // Adjacency list

public:
    MaxFlow(int n) : n(n), capacity(n, vector<int>(n, 0)), adj(n) {}

    void addEdge(int u, int v, int cap) {
        capacity[u][v] += cap; // Add capacity to the edge
        adj[u].push_back(v); // Add to adjacency list
        adj[v].push_back(u); // Add reverse edge to adjacency list
    }

    bool bfs(int source, int sink, vector<int>& parent) {
        vector<bool> visited(n, false);
        queue<int> q;
        q.push(source);
        visited[source] = true;

        while (!q.empty()) {
            int u = q.front();
            q.pop();

            for (int v : adj[u]) {
                if (!visited[v] && capacity[u][v] > 0) { // Available capacity
                    q.push(v);
                    visited[v] = true;
                    parent[v] = u;

                    if (v == sink) return true; // Reached the sink
                }
            }
        }
        return false; // No more augmenting path
    }

    int fordFulkerson(int source, int sink) {
        int max_flow = 0;
        vector<int> parent(n);

        while (bfs(source, sink, parent)) {
            // Find the maximum flow through the path found.
            int path_flow = INT_MAX;
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                path_flow = min(path_flow, capacity[u][v]);
            }

            // Update capacities of the edges and reverse edges along the path
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                capacity[u][v] -= path_flow; // Update forward edge
                capacity[v][u] += path_flow; // Update reverse edge
            }

            max_flow += path_flow; // Add path flow to overall flow
        }
        return max_flow;
    }
};

int main() {
    int n, m;
    cin >> n >> m; // Read number of vertices and edges
    MaxFlow maxFlow(n + 1); // n + 1 since nodes are 1-indexed

    for (int i = 0; i < m; ++i) {
        int a, b, c;
        cin >> a >> b >> c; // Read each edge
        maxFlow.addEdge(a, b, c);
    }

    cout << maxFlow.fordFulkerson(1, n) << endl; // Output the maximum flow from node 1 to node n
    return 0;
}

Test details

Test 1

Verdict: ACCEPTED

input
4 3
1 2 5
2 3 3
3 4 6

correct output
3

user output
3

Test 2

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 1
2 3 1
2 4 1
...

correct output
2

user output
2

Test 3

Verdict: ACCEPTED

input
4 5
1 2 1000000000
1 3 1000000000
2 3 1
2 4 1000000000
...

correct output
2000000000

user output
2000000000

Test 4

Verdict: ACCEPTED

input
2 1
2 1 100

correct output
0

user output
0

Test 5

Verdict:

input
2 1000
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
1000000000000

user output
0

Test 6

Verdict: ACCEPTED

input
500 998
1 2 54
1 3 59
1 4 83
2 5 79
...

correct output
60

user output
60

Test 7

Verdict: ACCEPTED

input
500 998
1 2 530873053
1 3 156306296
1 4 478040476
3 5 303609600
...

correct output
1093765123

user output
1093765123

Test 8

Verdict: ACCEPTED

input
2 1
1 2 1

correct output
1

user output
1

Test 9

Verdict: ACCEPTED

input
4 5
1 2 3
2 4 2
1 3 4
3 4 5
...

correct output
6

user output
6

Test 10

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 2
3 2 1
2 4 2
...

correct output
3

user output
3

Test 11

Verdict:

input
10 999
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
111000000000

user output
0

Test 12

Verdict: ACCEPTED

input
7 9
1 2 1
1 3 1
1 4 1
2 5 1
...

correct output
2

user output
2