CSES - Aalto Competitive Programming 2024 - wk7 Homework - Results
Submission details
Task:Download Speed
Sender:fabiank
Submission time:2024-10-21 18:53:55 +0300
Language:C++ (C++17)
Status:READY
Result:ACCEPTED
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.00 sdetails
#3ACCEPTED0.00 sdetails
#4ACCEPTED0.00 sdetails
#5ACCEPTED0.00 sdetails
#6ACCEPTED0.01 sdetails
#7ACCEPTED0.01 sdetails
#8ACCEPTED0.00 sdetails
#9ACCEPTED0.00 sdetails
#10ACCEPTED0.00 sdetails
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.00 sdetails

Compiler report

input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)':
input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  137 |         for (int i = 1; i < path_reversed.size(); i++)
      |                         ~~^~~~~~~~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>
#define REP(i, a, b) for (int i = a; i < b; i++)
// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val
using namespace std;
void print_vector(vector<int> &x)
{
for (int v : x)
{
cout << v << " ";
}
cout << "\n";
}
void print_matrix(vector<vector<int>> &matrix)
{
cout << "\n"
<< "----------------" << "\n";
for (vector<int> row : matrix)
{
print_vector(row);
}
cout << "\n"
<< "----------------" << "\n";
}
int calc_max_digit(int n)
{
int max_digit = 0;
while (n > 0 && max_digit < 9)
{
int digit = n % 10;
if (digit > max_digit)
{
max_digit = digit;
}
n /= 10;
}
return max_digit;
}
// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
int n = edges.size();
vector<bool> processed(n, false);
vector<ll> distances(n, LLONG_MAX);
distances[start_point] = 0;
priority_queue<pair<ll, int>> pq;
pq.push({0, start_point});
while (!pq.empty())
{
int curr = pq.top().second;
pq.pop();
if (processed[curr])
{
continue;
}
processed[curr] = true;
ll distance = distances[curr];
for (pair<int, int> edge : edges[curr])
{
if (distance + edge.second < distances[edge.first])
{
distances[edge.first] = distance + edge.second;
pq.push({-distances[edge.first], edge.first});
}
}
}
return distances;
}
ll bfs_edmondson_karp(const vector<vector<ll>> &connections,
const int source, const int target, vector<int> &path_reversed)
{
int n = connections.size();
queue<pair<int, ll>> queue;
queue.push({source, LLONG_MAX});
vector<int> predecessor(n, -2);
predecessor[source] = -1;
while (!queue.empty())
{
int current = queue.front().first;
ll current_bottleneck = queue.front().second;
queue.pop();
if (current == target)
{
while (current != -1)
{
path_reversed.push_back(current);
current = predecessor[current];
}
return current_bottleneck;
}
for (int edge_end = 0; edge_end < n; edge_end++)
{
ll edge_cap = connections[current][edge_end];
if (edge_cap > 0 && predecessor[edge_end] == -2)
{
predecessor[edge_end] = current;
queue.push({edge_end, min(current_bottleneck, edge_cap)});
}
}
}
return -1;
}
ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
ll flow = 0;
while (true)
{
vector<int> path_reversed;
ll path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);
if (path_capacity < 0)
{
break;
}
flow += path_capacity;
for (int i = 1; i < path_reversed.size(); i++)
{
int edge_end = path_reversed[i - 1];
int edge_start = path_reversed[i];
// reduce forwards edge
residual_graph[edge_start][edge_end] -= path_capacity;
assert(residual_graph[edge_start][edge_end] >= 0);
// add to backwards edge
residual_graph[edge_end][edge_start] += path_capacity;
assert(residual_graph[edge_end][edge_start] >= 0);
}
}
return flow;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vector<vector<ll>> adj_matrix(n + 1, vector<ll>(n + 1, 0));
for (int i = 1; i <= m; i++)
{
int start, end, capacity;
cin >> start >> end >> capacity;
adj_matrix[start][end] += capacity;
}
cout << ford_fulkerson(adj_matrix, 1, n) << endl;
}

Test details

Test 1

Verdict: ACCEPTED

input
4 3
1 2 5
2 3 3
3 4 6

correct output
3

user output
3

Test 2

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 1
2 3 1
2 4 1
...

correct output
2

user output
2

Test 3

Verdict: ACCEPTED

input
4 5
1 2 1000000000
1 3 1000000000
2 3 1
2 4 1000000000
...

correct output
2000000000

user output
2000000000

Test 4

Verdict: ACCEPTED

input
2 1
2 1 100

correct output
0

user output
0

Test 5

Verdict: ACCEPTED

input
2 1000
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
1000000000000

user output
1000000000000

Test 6

Verdict: ACCEPTED

input
500 998
1 2 54
1 3 59
1 4 83
2 5 79
...

correct output
60

user output
60

Test 7

Verdict: ACCEPTED

input
500 998
1 2 530873053
1 3 156306296
1 4 478040476
3 5 303609600
...

correct output
1093765123

user output
1093765123

Test 8

Verdict: ACCEPTED

input
2 1
1 2 1

correct output
1

user output
1

Test 9

Verdict: ACCEPTED

input
4 5
1 2 3
2 4 2
1 3 4
3 4 5
...

correct output
6

user output
6

Test 10

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 2
3 2 1
2 4 2
...

correct output
3

user output
3

Test 11

Verdict: ACCEPTED

input
10 999
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
111000000000

user output
111000000000

Test 12

Verdict: ACCEPTED

input
7 9
1 2 1
1 3 1
1 4 1
2 5 1
...

correct output
2

user output
2