Task: | Download Speed |
Sender: | fabiank |
Submission time: | 2024-10-21 18:53:55 +0300 |
Language: | C++ (C++17) |
Status: | READY |
Result: | ACCEPTED |
test | verdict | time | |
---|---|---|---|
#1 | ACCEPTED | 0.00 s | details |
#2 | ACCEPTED | 0.00 s | details |
#3 | ACCEPTED | 0.00 s | details |
#4 | ACCEPTED | 0.00 s | details |
#5 | ACCEPTED | 0.00 s | details |
#6 | ACCEPTED | 0.01 s | details |
#7 | ACCEPTED | 0.01 s | details |
#8 | ACCEPTED | 0.00 s | details |
#9 | ACCEPTED | 0.00 s | details |
#10 | ACCEPTED | 0.00 s | details |
#11 | ACCEPTED | 0.00 s | details |
#12 | ACCEPTED | 0.00 s | details |
Compiler report
input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)': input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare] 137 | for (int i = 1; i < path_reversed.size(); i++) | ~~^~~~~~~~~~~~~~~~~~~~~~
Code
#include <bits/stdc++.h>#define REP(i, a, b) for (int i = a; i < b; i++)// Type Aliases for 1D and 2D vectors with initialization#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val#define ll long long#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to valusing namespace std;void print_vector(vector<int> &x){for (int v : x){cout << v << " ";}cout << "\n";}void print_matrix(vector<vector<int>> &matrix){cout << "\n"<< "----------------" << "\n";for (vector<int> row : matrix){print_vector(row);}cout << "\n"<< "----------------" << "\n";}int calc_max_digit(int n){int max_digit = 0;while (n > 0 && max_digit < 9){int digit = n % 10;if (digit > max_digit){max_digit = digit;}n /= 10;}return max_digit;}// edges as edge list for outgoing node as pairs (end, cost)vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges){int n = edges.size();vector<bool> processed(n, false);vector<ll> distances(n, LLONG_MAX);distances[start_point] = 0;priority_queue<pair<ll, int>> pq;pq.push({0, start_point});while (!pq.empty()){int curr = pq.top().second;pq.pop();if (processed[curr]){continue;}processed[curr] = true;ll distance = distances[curr];for (pair<int, int> edge : edges[curr]){if (distance + edge.second < distances[edge.first]){distances[edge.first] = distance + edge.second;pq.push({-distances[edge.first], edge.first});}}}return distances;}ll bfs_edmondson_karp(const vector<vector<ll>> &connections,const int source, const int target, vector<int> &path_reversed){int n = connections.size();queue<pair<int, ll>> queue;queue.push({source, LLONG_MAX});vector<int> predecessor(n, -2);predecessor[source] = -1;while (!queue.empty()){int current = queue.front().first;ll current_bottleneck = queue.front().second;queue.pop();if (current == target){while (current != -1){path_reversed.push_back(current);current = predecessor[current];}return current_bottleneck;}for (int edge_end = 0; edge_end < n; edge_end++){ll edge_cap = connections[current][edge_end];if (edge_cap > 0 && predecessor[edge_end] == -2){predecessor[edge_end] = current;queue.push({edge_end, min(current_bottleneck, edge_cap)});}}}return -1;}ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target){ll flow = 0;while (true){vector<int> path_reversed;ll path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);if (path_capacity < 0){break;}flow += path_capacity;for (int i = 1; i < path_reversed.size(); i++){int edge_end = path_reversed[i - 1];int edge_start = path_reversed[i];// reduce forwards edgeresidual_graph[edge_start][edge_end] -= path_capacity;assert(residual_graph[edge_start][edge_end] >= 0);// add to backwards edgeresidual_graph[edge_end][edge_start] += path_capacity;assert(residual_graph[edge_end][edge_start] >= 0);}}return flow;}int main(){ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;vector<vector<ll>> adj_matrix(n + 1, vector<ll>(n + 1, 0));for (int i = 1; i <= m; i++){int start, end, capacity;cin >> start >> end >> capacity;adj_matrix[start][end] += capacity;}cout << ford_fulkerson(adj_matrix, 1, n) << endl;}
Test details
Test 1
Verdict: ACCEPTED
input |
---|
4 3 1 2 5 2 3 3 3 4 6 |
correct output |
---|
3 |
user output |
---|
3 |
Test 2
Verdict: ACCEPTED
input |
---|
4 5 1 2 1 1 3 1 2 3 1 2 4 1 ... |
correct output |
---|
2 |
user output |
---|
2 |
Test 3
Verdict: ACCEPTED
input |
---|
4 5 1 2 1000000000 1 3 1000000000 2 3 1 2 4 1000000000 ... |
correct output |
---|
2000000000 |
user output |
---|
2000000000 |
Test 4
Verdict: ACCEPTED
input |
---|
2 1 2 1 100 |
correct output |
---|
0 |
user output |
---|
0 |
Test 5
Verdict: ACCEPTED
input |
---|
2 1000 1 2 1000000000 1 2 1000000000 1 2 1000000000 1 2 1000000000 ... |
correct output |
---|
1000000000000 |
user output |
---|
1000000000000 |
Test 6
Verdict: ACCEPTED
input |
---|
500 998 1 2 54 1 3 59 1 4 83 2 5 79 ... |
correct output |
---|
60 |
user output |
---|
60 |
Test 7
Verdict: ACCEPTED
input |
---|
500 998 1 2 530873053 1 3 156306296 1 4 478040476 3 5 303609600 ... |
correct output |
---|
1093765123 |
user output |
---|
1093765123 |
Test 8
Verdict: ACCEPTED
input |
---|
2 1 1 2 1 |
correct output |
---|
1 |
user output |
---|
1 |
Test 9
Verdict: ACCEPTED
input |
---|
4 5 1 2 3 2 4 2 1 3 4 3 4 5 ... |
correct output |
---|
6 |
user output |
---|
6 |
Test 10
Verdict: ACCEPTED
input |
---|
4 5 1 2 1 1 3 2 3 2 1 2 4 2 ... |
correct output |
---|
3 |
user output |
---|
3 |
Test 11
Verdict: ACCEPTED
input |
---|
10 999 1 2 1000000000 1 2 1000000000 1 2 1000000000 1 2 1000000000 ... |
correct output |
---|
111000000000 |
user output |
---|
111000000000 |
Test 12
Verdict: ACCEPTED
input |
---|
7 9 1 2 1 1 3 1 1 4 1 2 5 1 ... |
correct output |
---|
2 |
user output |
---|
2 |