CSES - Aalto Competitive Programming 2024 - wk7 Homework - Results
Submission details
Task:Company Queries II
Sender:fabiank
Submission time:2024-10-21 16:00:48 +0300
Language:C++ (C++17)
Status:READY
Result:ACCEPTED
Test results
testverdicttime
#1ACCEPTED0.12 sdetails
#2ACCEPTED0.12 sdetails
#3ACCEPTED0.12 sdetails
#4ACCEPTED0.12 sdetails
#5ACCEPTED0.12 sdetails
#6ACCEPTED0.34 sdetails
#7ACCEPTED0.26 sdetails
#8ACCEPTED0.28 sdetails
#9ACCEPTED0.37 sdetails
#10ACCEPTED0.32 sdetails
#11ACCEPTED0.12 sdetails
#12ACCEPTED0.38 sdetails

Compiler report

input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)':
input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  137 |         for (int i = 1; i < path_reversed.size(); i++)
      |                         ~~^~~~~~~~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>
#define REP(i, a, b) for (int i = a; i < b; i++)
// Type Aliases for 1D and 2D vectors with initialization
#define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val
#define ll long long
#define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val
#define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val
using namespace std;
void print_vector(vector<int> &x)
{
for (int v : x)
{
cout << v << " ";
}
cout << "\n";
}
void print_matrix(vector<vector<int>> &matrix)
{
cout << "\n"
<< "----------------" << "\n";
for (vector<int> row : matrix)
{
print_vector(row);
}
cout << "\n"
<< "----------------" << "\n";
}
int calc_max_digit(int n)
{
int max_digit = 0;
while (n > 0 && max_digit < 9)
{
int digit = n % 10;
if (digit > max_digit)
{
max_digit = digit;
}
n /= 10;
}
return max_digit;
}
// edges as edge list for outgoing node as pairs (end, cost)
vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges)
{
int n = edges.size();
vector<bool> processed(n, false);
vector<ll> distances(n, LLONG_MAX);
distances[start_point] = 0;
priority_queue<pair<ll, int>> pq;
pq.push({0, start_point});
while (!pq.empty())
{
int curr = pq.top().second;
pq.pop();
if (processed[curr])
{
continue;
}
processed[curr] = true;
ll distance = distances[curr];
for (pair<int, int> edge : edges[curr])
{
if (distance + edge.second < distances[edge.first])
{
distances[edge.first] = distance + edge.second;
pq.push({-distances[edge.first], edge.first});
}
}
}
return distances;
}
int bfs_edmondson_karp(const vector<vector<ll>> &connections,
const int source, const int target, vector<int> &path_reversed)
{
int n = connections.size();
queue<pair<int, ll>> queue;
queue.push({source, LLONG_MAX});
vector<int> predecessor(n, -2);
predecessor[source] = -1;
while (!queue.empty())
{
int current = queue.front().first;
ll current_bottleneck = queue.front().second;
queue.pop();
if (current == target)
{
while (current != -1)
{
path_reversed.push_back(current);
current = predecessor[current];
}
return current_bottleneck;
}
for (int edge_end = 0; edge_end < n; edge_end++)
{
ll edge_cap = connections[current][edge_end];
if (edge_cap > 0 && predecessor[edge_end] == -2)
{
predecessor[edge_end] = current;
queue.push({edge_end, min(current_bottleneck, edge_cap)});
}
}
}
return -1;
}
ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target)
{
ll flow = 0;
while (true)
{
vector<int> path_reversed;
int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed);
if (path_capacity < 0)
{
break;
}
flow += path_capacity;
for (int i = 1; i < path_reversed.size(); i++)
{
int edge_end = path_reversed[i - 1];
int edge_start = path_reversed[i];
// reduce forwards edge
residual_graph[edge_start][edge_end] -= path_capacity;
assert(residual_graph[edge_start][edge_end] >= 0);
// add to backwards edge
residual_graph[edge_end][edge_start] += path_capacity;
assert(residual_graph[edge_end][edge_start] >= 0);
}
}
return flow;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
const int MAX_N = 2000002;
const int MAX_LOG = 18;
int n, q;
int parent[MAX_N];
int depth[MAX_N];
int up[MAX_N][MAX_LOG + 1];
cin >> n >> q;
parent[1] = 0; // The general director has no boss
depth[1] = 0; // Depth of the root is 0
// Reading the boss (parent) of each employee
for (int i = 2; i <= n; ++i)
{
cin >> parent[i];
}
// Initializing the up table and calculating depths
for (int i = 1; i <= n; ++i)
{
up[i][0] = parent[i];
if (i != 1)
{
depth[i] = depth[parent[i]] + 1;
}
}
// Preprocessing the up table for binary lifting
for (int k = 1; k <= MAX_LOG; ++k)
{
for (int i = 1; i <= n; ++i)
{
if (up[i][k - 1] != 0)
{
up[i][k] = up[up[i][k - 1]][k - 1];
}
else
{
up[i][k] = 0;
}
}
}
// Answering queries
while (q--)
{
int a, b;
cin >> a >> b;
if (depth[a] < depth[b])
{
swap(a, b);
}
int diff = depth[a] - depth[b];
// Lifting a to the same depth as b
for (int k = MAX_LOG; k >= 0; --k)
{
if (diff >= (1 << k))
{
a = up[a][k];
diff -= (1 << k);
}
}
if (a == b)
{
cout << a << "\n";
}
else
{
// Finding the lowest common boss
for (int k = MAX_LOG; k >= 0; --k)
{
if (up[a][k] != 0 && up[a][k] != up[b][k])
{
a = up[a][k];
b = up[b][k];
}
}
int lca = up[a][0];
if (lca == 0)
lca = 1; // If no common ancestor found, the root is the LCA
cout << lca << "\n";
}
}
return 0;
}

Test details

Test 1

Verdict: ACCEPTED

input
10 10
1 2 3 4 5 6 7 8 9
6 9
8 10
10 3
...

correct output
6
8
3
1
8
...

user output
6
8
3
1
8
...

Test 2

Verdict: ACCEPTED

input
10 10
1 1 1 1 1 1 1 1 1
1 7
3 4
4 1
...

correct output
1
1
1
1
1
...

user output
1
1
1
1
1
...

Test 3

Verdict: ACCEPTED

input
10 10
1 1 1 1 2 3 4 4 1
1 8
2 7
8 3
...

correct output
1
1
1
1
1
...

user output
1
1
1
1
1
...

Test 4

Verdict: ACCEPTED

input
10 10
1 1 3 1 2 2 5 3 9
7 2
7 6
3 9
...

correct output
2
2
3
1
1
...

user output
2
2
3
1
1
...

Test 5

Verdict: ACCEPTED

input
10 10
1 2 3 2 5 3 2 2 4
6 1
1 3
1 9
...

correct output
1
1
1
2
2
...

user output
1
1
1
2
2
...

Test 6

Verdict: ACCEPTED

input
200000 200000
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

correct output
74862
8750
16237
72298
58111
...

user output
74862
8750
16237
72298
58111
...
Truncated

Test 7

Verdict: ACCEPTED

input
200000 200000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

correct output
1
1
1
1
1
...

user output
1
1
1
1
1
...
Truncated

Test 8

Verdict: ACCEPTED

input
200000 200000
1 2 1 2 3 2 1 6 3 1 10 12 13 4...

correct output
1
2
2
2
1
...

user output
1
2
2
2
1
...
Truncated

Test 9

Verdict: ACCEPTED

input
200000 200000
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

correct output
2796
633
633
151
2690
...

user output
2796
633
633
151
2690
...
Truncated

Test 10

Verdict: ACCEPTED

input
200000 200000
1 2 3 4 5 6 7 8 9 10 11 12 13 ...

correct output
365
73
103
365
216
...

user output
365
73
103
365
216
...
Truncated

Test 11

Verdict: ACCEPTED

input
2 4
1
1 1
1 2
2 1
...

correct output
1
1
1
2

user output
1
1
1
2

Test 12

Verdict: ACCEPTED

input
200000 200000
1 1 2 3 4 5 6 7 8 9 10 11 12 1...

correct output
27468
6353
27468
6353
6353
...

user output
27468
6353
27468
6353
6353
...
Truncated