Task: | Company Queries II |
Sender: | fabiank |
Submission time: | 2024-10-21 16:00:48 +0300 |
Language: | C++ (C++17) |
Status: | READY |
Result: | ACCEPTED |
test | verdict | time | |
---|---|---|---|
#1 | ACCEPTED | 0.12 s | details |
#2 | ACCEPTED | 0.12 s | details |
#3 | ACCEPTED | 0.12 s | details |
#4 | ACCEPTED | 0.12 s | details |
#5 | ACCEPTED | 0.12 s | details |
#6 | ACCEPTED | 0.34 s | details |
#7 | ACCEPTED | 0.26 s | details |
#8 | ACCEPTED | 0.28 s | details |
#9 | ACCEPTED | 0.37 s | details |
#10 | ACCEPTED | 0.32 s | details |
#11 | ACCEPTED | 0.12 s | details |
#12 | ACCEPTED | 0.38 s | details |
Compiler report
input/code.cpp: In function 'long long int ford_fulkerson(std::vector<std::vector<long long int> >&, int, int)': input/code.cpp:137:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare] 137 | for (int i = 1; i < path_reversed.size(); i++) | ~~^~~~~~~~~~~~~~~~~~~~~~
Code
#include <bits/stdc++.h> #define REP(i, a, b) for (int i = a; i < b; i++) // Type Aliases for 1D and 2D vectors with initialization #define vll(n, val) vector<long long>(n, val) // 1D vector of long longs with size n, initialized to val #define ll long long #define vvi(n, m, val) vector<vector<int>>(n, vector<int>(m, val)) // 2D vector of ints (n x m), initialized to val #define vvll(n, m, val) vector<vector<long long>>(n, vector<long long>(m, val)) // 2D vector of long longs (n x m), initialized to val using namespace std; void print_vector(vector<int> &x) { for (int v : x) { cout << v << " "; } cout << "\n"; } void print_matrix(vector<vector<int>> &matrix) { cout << "\n" << "----------------" << "\n"; for (vector<int> row : matrix) { print_vector(row); } cout << "\n" << "----------------" << "\n"; } int calc_max_digit(int n) { int max_digit = 0; while (n > 0 && max_digit < 9) { int digit = n % 10; if (digit > max_digit) { max_digit = digit; } n /= 10; } return max_digit; } // edges as edge list for outgoing node as pairs (end, cost) vector<ll> dijkstras(int start_point, vector<vector<pair<int, int>>> edges) { int n = edges.size(); vector<bool> processed(n, false); vector<ll> distances(n, LLONG_MAX); distances[start_point] = 0; priority_queue<pair<ll, int>> pq; pq.push({0, start_point}); while (!pq.empty()) { int curr = pq.top().second; pq.pop(); if (processed[curr]) { continue; } processed[curr] = true; ll distance = distances[curr]; for (pair<int, int> edge : edges[curr]) { if (distance + edge.second < distances[edge.first]) { distances[edge.first] = distance + edge.second; pq.push({-distances[edge.first], edge.first}); } } } return distances; } int bfs_edmondson_karp(const vector<vector<ll>> &connections, const int source, const int target, vector<int> &path_reversed) { int n = connections.size(); queue<pair<int, ll>> queue; queue.push({source, LLONG_MAX}); vector<int> predecessor(n, -2); predecessor[source] = -1; while (!queue.empty()) { int current = queue.front().first; ll current_bottleneck = queue.front().second; queue.pop(); if (current == target) { while (current != -1) { path_reversed.push_back(current); current = predecessor[current]; } return current_bottleneck; } for (int edge_end = 0; edge_end < n; edge_end++) { ll edge_cap = connections[current][edge_end]; if (edge_cap > 0 && predecessor[edge_end] == -2) { predecessor[edge_end] = current; queue.push({edge_end, min(current_bottleneck, edge_cap)}); } } } return -1; } ll ford_fulkerson(vector<vector<ll>> &residual_graph, const int source, const int target) { ll flow = 0; while (true) { vector<int> path_reversed; int path_capacity = bfs_edmondson_karp(residual_graph, source, target, path_reversed); if (path_capacity < 0) { break; } flow += path_capacity; for (int i = 1; i < path_reversed.size(); i++) { int edge_end = path_reversed[i - 1]; int edge_start = path_reversed[i]; // reduce forwards edge residual_graph[edge_start][edge_end] -= path_capacity; assert(residual_graph[edge_start][edge_end] >= 0); // add to backwards edge residual_graph[edge_end][edge_start] += path_capacity; assert(residual_graph[edge_end][edge_start] >= 0); } } return flow; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); const int MAX_N = 2000002; const int MAX_LOG = 18; int n, q; int parent[MAX_N]; int depth[MAX_N]; int up[MAX_N][MAX_LOG + 1]; cin >> n >> q; parent[1] = 0; // The general director has no boss depth[1] = 0; // Depth of the root is 0 // Reading the boss (parent) of each employee for (int i = 2; i <= n; ++i) { cin >> parent[i]; } // Initializing the up table and calculating depths for (int i = 1; i <= n; ++i) { up[i][0] = parent[i]; if (i != 1) { depth[i] = depth[parent[i]] + 1; } } // Preprocessing the up table for binary lifting for (int k = 1; k <= MAX_LOG; ++k) { for (int i = 1; i <= n; ++i) { if (up[i][k - 1] != 0) { up[i][k] = up[up[i][k - 1]][k - 1]; } else { up[i][k] = 0; } } } // Answering queries while (q--) { int a, b; cin >> a >> b; if (depth[a] < depth[b]) { swap(a, b); } int diff = depth[a] - depth[b]; // Lifting a to the same depth as b for (int k = MAX_LOG; k >= 0; --k) { if (diff >= (1 << k)) { a = up[a][k]; diff -= (1 << k); } } if (a == b) { cout << a << "\n"; } else { // Finding the lowest common boss for (int k = MAX_LOG; k >= 0; --k) { if (up[a][k] != 0 && up[a][k] != up[b][k]) { a = up[a][k]; b = up[b][k]; } } int lca = up[a][0]; if (lca == 0) lca = 1; // If no common ancestor found, the root is the LCA cout << lca << "\n"; } } return 0; }
Test details
Test 1
Verdict: ACCEPTED
input |
---|
10 10 1 2 3 4 5 6 7 8 9 6 9 8 10 10 3 ... |
correct output |
---|
6 8 3 1 8 ... |
user output |
---|
6 8 3 1 8 ... |
Test 2
Verdict: ACCEPTED
input |
---|
10 10 1 1 1 1 1 1 1 1 1 1 7 3 4 4 1 ... |
correct output |
---|
1 1 1 1 1 ... |
user output |
---|
1 1 1 1 1 ... |
Test 3
Verdict: ACCEPTED
input |
---|
10 10 1 1 1 1 2 3 4 4 1 1 8 2 7 8 3 ... |
correct output |
---|
1 1 1 1 1 ... |
user output |
---|
1 1 1 1 1 ... |
Test 4
Verdict: ACCEPTED
input |
---|
10 10 1 1 3 1 2 2 5 3 9 7 2 7 6 3 9 ... |
correct output |
---|
2 2 3 1 1 ... |
user output |
---|
2 2 3 1 1 ... |
Test 5
Verdict: ACCEPTED
input |
---|
10 10 1 2 3 2 5 3 2 2 4 6 1 1 3 1 9 ... |
correct output |
---|
1 1 1 2 2 ... |
user output |
---|
1 1 1 2 2 ... |
Test 6
Verdict: ACCEPTED
input |
---|
200000 200000 1 2 3 4 5 6 7 8 9 10 11 12 13 ... |
correct output |
---|
74862 8750 16237 72298 58111 ... |
user output |
---|
74862 8750 16237 72298 58111 ... |
Test 7
Verdict: ACCEPTED
input |
---|
200000 200000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... |
correct output |
---|
1 1 1 1 1 ... |
user output |
---|
1 1 1 1 1 ... |
Test 8
Verdict: ACCEPTED
input |
---|
200000 200000 1 2 1 2 3 2 1 6 3 1 10 12 13 4... |
correct output |
---|
1 2 2 2 1 ... |
user output |
---|
1 2 2 2 1 ... |
Test 9
Verdict: ACCEPTED
input |
---|
200000 200000 1 2 3 4 5 6 7 8 9 10 11 12 13 ... |
correct output |
---|
2796 633 633 151 2690 ... |
user output |
---|
2796 633 633 151 2690 ... |
Test 10
Verdict: ACCEPTED
input |
---|
200000 200000 1 2 3 4 5 6 7 8 9 10 11 12 13 ... |
correct output |
---|
365 73 103 365 216 ... |
user output |
---|
365 73 103 365 216 ... |
Test 11
Verdict: ACCEPTED
input |
---|
2 4 1 1 1 1 2 2 1 ... |
correct output |
---|
1 1 1 2 |
user output |
---|
1 1 1 2 |
Test 12
Verdict: ACCEPTED
input |
---|
200000 200000 1 1 2 3 4 5 6 7 8 9 10 11 12 1... |
correct output |
---|
27468 6353 27468 6353 6353 ... |
user output |
---|
27468 6353 27468 6353 6353 ... |