CSES - Aalto Competitive Programming 2024 - wk7 Homework - Results
Submission details
Task:Download Speed
Sender:MallocManfred
Submission time:2024-10-10 17:32:04 +0300
Language:C++ (C++11)
Status:READY
Result:ACCEPTED
Test results
testverdicttime
#1ACCEPTED0.00 sdetails
#2ACCEPTED0.00 sdetails
#3ACCEPTED0.00 sdetails
#4ACCEPTED0.00 sdetails
#5ACCEPTED0.00 sdetails
#6ACCEPTED0.01 sdetails
#7ACCEPTED0.01 sdetails
#8ACCEPTED0.00 sdetails
#9ACCEPTED0.00 sdetails
#10ACCEPTED0.00 sdetails
#11ACCEPTED0.00 sdetails
#12ACCEPTED0.00 sdetails

Compiler report

input/code.cpp: In function 'long long int maxflow(long long int, long long int)':
input/code.cpp:70:21: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
   70 |     while (new_flow = bfs(s, t, parent)) {
      |            ~~~~~~~~~^~~~~~~~~~~~~~~~~~~

Code

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define vout(x) for(int i=0;i<(long long)x.size();i++) printf("%lld ",x[i]);
// g++ <filename>.cpp -g -Wall -Wextra -DDEBUG -o <executable>
// copied from: https://codeforces.com/blog/entry/79024
// === Debug macro starts here ===
int recur_depth = 0;
#ifdef DEBUG
#define dbg(x) {++recur_depth; auto x_=x; --recur_depth; cerr<<string(recur_depth, '\t')<<"\e[91m"<<__func__<<":"<<__LINE__<<"\t"<<#x<<" = "<<x_<<"\e[39m"<<endl;}
#else
#define dbg(x)
#endif
template<typename Ostream, typename Cont>
typename enable_if<is_same<Ostream,ostream>::value, Ostream&>::type operator<<(Ostream& os, const Cont& v){
os<<"[";
for(auto& x:v){os<<x<<", ";}
return os<<"]";
}
template<typename Ostream, typename ...Ts>
Ostream& operator<<(Ostream& os, const pair<Ts...>& p){
return os<<"{"<<p.first<<", "<<p.second<<"}";
}
// === Debug macro ends here ===
const int INF = LONG_MAX;
int n, m;
vector<vector<int>> capacity;
vector<vector<int>> adj;
// code taken and adapted from https://cp-algorithms.com/graph/edmonds_karp.html
int bfs(int s, int t, vector<int>& parent) {
fill(parent.begin(), parent.end(), -1);
parent[s] = -2;
queue<pair<int, int>> q;
q.push({s, INF});
while (!q.empty()) {
int cur = q.front().first;
int flow = q.front().second;
q.pop();
for (int next : adj[cur]) {
if (parent[next] == -1 && capacity[cur][next]) {
parent[next] = cur;
int new_flow = min(flow, capacity[cur][next]);
if (next == t)
return new_flow;
q.push({next, new_flow});
}
}
}
return 0;
}
// code taken and adapted from https://cp-algorithms.com/graph/edmonds_karp.html
int maxflow(int s, int t) {
int flow = 0;
vector<int> parent(n + 1);
int new_flow;
while (new_flow = bfs(s, t, parent)) {
flow += new_flow;
int cur = t;
while (cur != s) {
int prev = parent[cur];
capacity[prev][cur] -= new_flow;
capacity[cur][prev] += new_flow;
cur = prev;
}
}
return flow;
}
signed main() {
cin >> n >> m;
capacity.assign(n + 1, vector<int>(n + 1, 0));
adj.resize(n + 1);
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
capacity[a][b] += c;
adj[a].push_back(b);
adj[b].push_back(a);
}
int source = 1;
int sink = n;
cout << maxflow(source, sink) << "\n";
return 0;
}

Test details

Test 1

Verdict: ACCEPTED

input
4 3
1 2 5
2 3 3
3 4 6

correct output
3

user output
3

Test 2

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 1
2 3 1
2 4 1
...

correct output
2

user output
2

Test 3

Verdict: ACCEPTED

input
4 5
1 2 1000000000
1 3 1000000000
2 3 1
2 4 1000000000
...

correct output
2000000000

user output
2000000000

Test 4

Verdict: ACCEPTED

input
2 1
2 1 100

correct output
0

user output
0

Test 5

Verdict: ACCEPTED

input
2 1000
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
1000000000000

user output
1000000000000

Test 6

Verdict: ACCEPTED

input
500 998
1 2 54
1 3 59
1 4 83
2 5 79
...

correct output
60

user output
60

Test 7

Verdict: ACCEPTED

input
500 998
1 2 530873053
1 3 156306296
1 4 478040476
3 5 303609600
...

correct output
1093765123

user output
1093765123

Test 8

Verdict: ACCEPTED

input
2 1
1 2 1

correct output
1

user output
1

Test 9

Verdict: ACCEPTED

input
4 5
1 2 3
2 4 2
1 3 4
3 4 5
...

correct output
6

user output
6

Test 10

Verdict: ACCEPTED

input
4 5
1 2 1
1 3 2
3 2 1
2 4 2
...

correct output
3

user output
3

Test 11

Verdict: ACCEPTED

input
10 999
1 2 1000000000
1 2 1000000000
1 2 1000000000
1 2 1000000000
...

correct output
111000000000

user output
111000000000

Test 12

Verdict: ACCEPTED

input
7 9
1 2 1
1 3 1
1 4 1
2 5 1
...

correct output
2

user output
2